13

我一直在研究使用计划对比而不是事后 t 检验。我通常使用ezANOVA(III 型方差分析),但目前似乎ezANOVA不适合使用计划的对比。

aov()另一方面是 I 型方差分析(我不想就哪种类型最适合哪种类型的设计进行辩论)。使用(用于组间设计)进行有计划的对比是直截了当aov()的,但我想在重复测量中进行 III 型方差分析,坦率地ezANOVA说,输出更加用户友好。

请记住ezANOVA,可以选择包括return_aov = TRUE是否有人知道使用提供的信息ezANOVA进行计划对比的方法?

注意: return_aov = TRUE允许通过以下方式访问输出aov

summary.lm(ModelName$aov$'Participant:IndependentVariable1')

wid上面的参与者是添加到in的示例变量ezANOVA

wid = .(Participant)

summary.lm()通常在呈现计划对比的结果时使用aov,在组 ANOVA 之间授予,而不是重复测量。

我对使用输出进行重复测量方差分析的计划对比特别感兴趣。

赏金目标

我想从这个赏金中实现的目标:

1) 使用 的输出ezANOVA在重复测量方差分析中进行计划对比。

1A) 使用ezANOVAANOVA 的输出在受试者之间进行有计划的对比(这应该相对容易,因此不是要求赏金的必要条件。)

任何虚拟数据都应该足够了,但这里提醒您ezANOVA重复测量方差分析的格式:

ModelName <- ezANOVA(
data = DataSet,
dv = .(DependentVariable), 
wid = .(Participant), 
within = .(IndependentVariable1, IndependentVariable2), 
type=3, 
detailed = TRUE, 
return_aov = TRUE)

这是一个相关问题,其中包含可用于解决此问题的可重现数据和代码。

您可以在此处找到一份PDF,其中提供了有关计划对比及其作用的一些背景信息。

4

1 回答 1

2

emmeans软件包提供了适当的功能来计算aov和对象的估计边际均值 (EMM) 的自定义对比/任意线性函数(有关支持模型的完整列表,aovlist请参见此处)。

下面我使用包ANT自带的数据集ez

首先,我们使用ezANOVA. 请注意,需要设置正交对比才能获得有意义的 Type-III 测试(例如,参见 John Fox 的答案

library("ez")
library("emmeans")

# set orthogonal contrasts
options(contrasts = c("contr.sum", "contr.poly"))

data(ANT)
rt_anova <- ezANOVA(data = ANT[ANT$error == 0, ], 
                    dv = rt,
                    wid = subnum, 
                    within = .(cue, flank),
                    between = group,
                    type = 3,
                    return_aov = TRUE)

然后,我们可以计算所有组-侧面组合的 EMM。

emm <- emmeans(rt_anova$aov, ~ group * flank)
emm
## group     flank         emmean       SE    df lower.CL upper.CL
## Control   Neutral     381.5546 1.735392 53.97 378.0753 385.0339
## Treatment Neutral     379.9286 1.735392 53.97 376.4493 383.4079
## Control   Congruent   381.6363 1.735392 53.97 378.1570 385.1155
## Treatment Congruent   379.7520 1.735392 53.97 376.2727 383.2313
## Control   Incongruent 466.6770 1.735392 53.97 463.1977 470.1563
## Treatment Incongruent 452.2352 1.735392 53.97 448.7559 455.7145

现在很容易计算这些 EMM 上的所有成对比较或任何所需的对比度。如果您需要更多关于如何从假设中得出对比权重的详细信息,
另请参阅本书章节和我的答案

# all pairwise comparisons 
pairs(emm, adjust = "Holm")
## contrast                                        estimate       SE    df t.ratio p.value
## Control,Neutral - Treatment,Neutral           1.62594836 2.454215 53.97   0.663  1.0000
## Control,Neutral - Control,Congruent          -0.08167403 2.473955 36.00  -0.033  1.0000
## Control,Neutral - Treatment,Congruent         1.80259257 2.454215 53.97   0.734  1.0000
## Control,Neutral - Control,Incongruent       -85.12239797 2.473955 36.00 -34.407  <.0001
## Control,Neutral - Treatment,Incongruent     -70.68062093 2.454215 53.97 -28.800  <.0001
## Treatment,Neutral - Control,Congruent        -1.70762239 2.454215 53.97  -0.696  1.0000
## Treatment,Neutral - Treatment,Congruent       0.17664421 2.473955 36.00   0.071  1.0000
## Treatment,Neutral - Control,Incongruent     -86.74834633 2.454215 53.97 -35.347  <.0001
## Treatment,Neutral - Treatment,Incongruent   -72.30656929 2.473955 36.00 -29.227  <.0001
## Control,Congruent - Treatment,Congruent       1.88426660 2.454215 53.97   0.768  1.0000
## Control,Congruent - Control,Incongruent     -85.04072394 2.473955 36.00 -34.374  <.0001
## Control,Congruent - Treatment,Incongruent   -70.59894690 2.454215 53.97 -28.766  <.0001
## Treatment,Congruent - Control,Incongruent   -86.92499054 2.454215 53.97 -35.419  <.0001
## Treatment,Congruent - Treatment,Incongruent -72.48321351 2.473955 36.00 -29.299  <.0001
## Control,Incongruent - Treatment,Incongruent  14.44177704 2.454215 53.97   5.884  <.0001
## 
## Results are averaged over the levels of: cue 
## P value adjustment: holm method for 15 tests 

# custom contrasts
contrast(
  emm, 
  list(c1 = c(1, -1, 0, 0, 0, 0), # reproduces first pairwise comparison
       # emmean of row 1 - (emmean of row 1 + emmean of row 2) / 2; see EMMs table
       # 381.5546 - (379.9286 + 381.6363) / 2
       c2 = c(1, -0.5, -0.5, 0, 0, 0))
 )
 ## contrast  estimate       SE    df t.ratio p.value
 ## c1       1.6259484 2.454215 53.97   0.663  0.5105
 ## c2       0.7721372 2.136825 43.84   0.361  0.7196

这同样适用于纯粹的受试者内方差分析或受试者间方差分析。

# within-subjects ANOVA
rt_anova_wi <- ezANOVA(data = ANT[ANT$error == 0, ], 
                    dv = rt,
                    wid = subnum, 
                    within = .(cue, flank),
                    type = 3,
                    return_aov = TRUE)

emm <- emmeans(rt_anova_wi$aov, ~ cue * flank)
contrast(
  emm, 
  list(c1 = c(1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 
       c2 = c(1, -0.5, -0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0))
) 
## contrast estimate       SE     df t.ratio p.value
## c1       47.31005 3.802857 170.34  12.441  <.0001
## c2       50.35320 3.293371 170.34  15.289  <.0001

# between-subjects ANOVA
rt_anova_bw <- ezANOVA(data = ANT[ANT$error == 0, ], 
                       dv = rt,
                       wid = subnum, 
                       within_full = .(cue, flank), 
                       between = group,
                       type = 3,
                       return_aov = TRUE)

emm_bw <- emmeans(rt_anova_bw$aov, ~ group)
# custom linear function
contrast(
  emm_bw, 
  list(c1 = c(2/3, 1/2)) 
)
## contrast estimate        SE df t.ratio p.value
## c1       475.2899 0.8213448 18 578.673  <.0001
于 2019-01-02T17:11:09.530 回答