246

我正在使用 R,我有两个数据框:胡萝卜和黄瓜。每个数据框都有一个数字列,列出了所有测量的胡萝卜(总计:100k 胡萝卜)和黄瓜(总计:50k 黄瓜)的长度。

我希望在同一个图上绘制两个直方图——胡萝卜长度和黄瓜长度。它们重叠,所以我想我也需要一些透明度。我还需要使用相对频率而不是绝对数字,因为每组中的实例数量不同。

这样的东西会很好,但我不明白如何从我的两个表中创建它:

重叠密度

4

9 回答 9

297

这是一个使用基本图形和 alpha 混合(不适用于所有图形设备)的更简单的解决方案:

set.seed(42)
p1 <- hist(rnorm(500,4))                     # centered at 4
p2 <- hist(rnorm(500,6))                     # centered at 6
plot( p1, col=rgb(0,0,1,1/4), xlim=c(0,10))  # first histogram
plot( p2, col=rgb(1,0,0,1/4), xlim=c(0,10), add=T)  # second

关键是颜色是半透明的。

两年多后编辑:由于这刚刚获得了赞成票,我想我不妨添加代码生成的视觉效果,因为 alpha 混合非常有用:

在此处输入图像描述

于 2010-08-24T13:40:41.720 回答
212

您链接到的该图像用于密度曲线,而不是直方图。

如果您一直在 ggplot 上阅读,那么您可能唯一缺少的就是将两个数据框组合成一个长数据框。

所以,让我们从你所拥有的东西开始,两组独立的数据并将它们组合起来。

carrots <- data.frame(length = rnorm(100000, 6, 2))
cukes <- data.frame(length = rnorm(50000, 7, 2.5))

# Now, combine your two dataframes into one.  
# First make a new column in each that will be 
# a variable to identify where they came from later.
carrots$veg <- 'carrot'
cukes$veg <- 'cuke'

# and combine into your new data frame vegLengths
vegLengths <- rbind(carrots, cukes)

之后,如果您的数据已经是长格式,则无需这样做,您只需要一行来制作绘图。

ggplot(vegLengths, aes(length, fill = veg)) + geom_density(alpha = 0.2)

在此处输入图像描述

现在,如果您确实需要直方图,则以下内容将起作用。请注意,您必须从默认的“堆栈”参数更改位置。如果您真的不知道您的数据应该是什么样子,您可能会错过这一点。更高的 alpha 看起来更好。另请注意,我将其设为密度直方图。很容易删除它y = ..density..以使其恢复计数。

ggplot(vegLengths, aes(length, fill = veg)) + 
   geom_histogram(alpha = 0.5, aes(y = ..density..), position = 'identity')

在此处输入图像描述

于 2010-08-22T15:51:04.620 回答
45

这是我写的一个函数,它使用伪透明来表示重叠的直方图

plotOverlappingHist <- function(a, b, colors=c("white","gray20","gray50"),
                                breaks=NULL, xlim=NULL, ylim=NULL){

  ahist=NULL
  bhist=NULL

  if(!(is.null(breaks))){
    ahist=hist(a,breaks=breaks,plot=F)
    bhist=hist(b,breaks=breaks,plot=F)
  } else {
    ahist=hist(a,plot=F)
    bhist=hist(b,plot=F)

    dist = ahist$breaks[2]-ahist$breaks[1]
    breaks = seq(min(ahist$breaks,bhist$breaks),max(ahist$breaks,bhist$breaks),dist)

    ahist=hist(a,breaks=breaks,plot=F)
    bhist=hist(b,breaks=breaks,plot=F)
  }

  if(is.null(xlim)){
    xlim = c(min(ahist$breaks,bhist$breaks),max(ahist$breaks,bhist$breaks))
  }

  if(is.null(ylim)){
    ylim = c(0,max(ahist$counts,bhist$counts))
  }

  overlap = ahist
  for(i in 1:length(overlap$counts)){
    if(ahist$counts[i] > 0 & bhist$counts[i] > 0){
      overlap$counts[i] = min(ahist$counts[i],bhist$counts[i])
    } else {
      overlap$counts[i] = 0
    }
  }

  plot(ahist, xlim=xlim, ylim=ylim, col=colors[1])
  plot(bhist, xlim=xlim, ylim=ylim, col=colors[2], add=T)
  plot(overlap, xlim=xlim, ylim=ylim, col=colors[3], add=T)
}

这是使用 R 对透明颜色的支持的另一种方法

a=rnorm(1000, 3, 1)
b=rnorm(1000, 6, 1)
hist(a, xlim=c(0,10), col="red")
hist(b, add=T, col=rgb(0, 1, 0, 0.5) )

结果最终看起来像这样: 替代文字

于 2010-08-22T19:21:14.530 回答
37

已经有漂亮的答案了,但我想添加这个。对我来说看上去很好。(从@Dirk 复制随机数)。library(scales)需要`

set.seed(42)
hist(rnorm(500,4),xlim=c(0,10),col='skyblue',border=F)
hist(rnorm(500,6),add=T,col=scales::alpha('red',.5),border=F)

结果是……

在此处输入图像描述

更新:这种重叠功能也可能对某些人有用。

hist0 <- function(...,col='skyblue',border=T) hist(...,col=col,border=border) 

我觉得结果hist0比看起来更漂亮hist

hist2 <- function(var1, var2,name1='',name2='',
              breaks = min(max(length(var1), length(var2)),20), 
              main0 = "", alpha0 = 0.5,grey=0,border=F,...) {    

library(scales)
  colh <- c(rgb(0, 1, 0, alpha0), rgb(1, 0, 0, alpha0))
  if(grey) colh <- c(alpha(grey(0.1,alpha0)), alpha(grey(0.9,alpha0)))

  max0 = max(var1, var2)
  min0 = min(var1, var2)

  den1_max <- hist(var1, breaks = breaks, plot = F)$density %>% max
  den2_max <- hist(var2, breaks = breaks, plot = F)$density %>% max
  den_max <- max(den2_max, den1_max)*1.2
  var1 %>% hist0(xlim = c(min0 , max0) , breaks = breaks,
                 freq = F, col = colh[1], ylim = c(0, den_max), main = main0,border=border,...)
  var2 %>% hist0(xlim = c(min0 , max0),  breaks = breaks,
                 freq = F, col = colh[2], ylim = c(0, den_max), add = T,border=border,...)
  legend(min0,den_max, legend = c(
    ifelse(nchar(name1)==0,substitute(var1) %>% deparse,name1),
    ifelse(nchar(name2)==0,substitute(var2) %>% deparse,name2),
    "Overlap"), fill = c('white','white', colh[1]), bty = "n", cex=1,ncol=3)

  legend(min0,den_max, legend = c(
    ifelse(nchar(name1)==0,substitute(var1) %>% deparse,name1),
    ifelse(nchar(name2)==0,substitute(var2) %>% deparse,name2),
    "Overlap"), fill = c(colh, colh[2]), bty = "n", cex=1,ncol=3) }

的结果

par(mar=c(3, 4, 3, 2) + 0.1) 
set.seed(100) 
hist2(rnorm(10000,2),rnorm(10000,3),breaks = 50)

在此处输入图像描述

于 2014-11-05T21:17:06.887 回答
25

以下是如何在“经典”R 图形中执行此操作的示例:

## generate some random data
carrotLengths <- rnorm(1000,15,5)
cucumberLengths <- rnorm(200,20,7)
## calculate the histograms - don't plot yet
histCarrot <- hist(carrotLengths,plot = FALSE)
histCucumber <- hist(cucumberLengths,plot = FALSE)
## calculate the range of the graph
xlim <- range(histCucumber$breaks,histCarrot$breaks)
ylim <- range(0,histCucumber$density,
              histCarrot$density)
## plot the first graph
plot(histCarrot,xlim = xlim, ylim = ylim,
     col = rgb(1,0,0,0.4),xlab = 'Lengths',
     freq = FALSE, ## relative, not absolute frequency
     main = 'Distribution of carrots and cucumbers')
## plot the second graph on top of this
opar <- par(new = FALSE)
plot(histCucumber,xlim = xlim, ylim = ylim,
     xaxt = 'n', yaxt = 'n', ## don't add axes
     col = rgb(0,0,1,0.4), add = TRUE,
     freq = FALSE) ## relative, not absolute frequency
## add a legend in the corner
legend('topleft',c('Carrots','Cucumbers'),
       fill = rgb(1:0,0,0:1,0.4), bty = 'n',
       border = NA)
par(opar)

唯一的问题是,如果直方图中断对齐,它看起来会更好,这可能必须手动完成(在传递给的参数中hist)。

于 2010-08-22T15:58:16.260 回答
23

这是我只在基础 R 中提供的 ggplot2 版本。我从@nullglob 复制了一些。

生成数据

carrots <- rnorm(100000,5,2)
cukes <- rnorm(50000,7,2.5)

您不需要像 ggplot2 那样将其放入数据框中。这种方法的缺点是你必须写出更多的情节细节。优点是您可以控制情节的更多细节。

## calculate the density - don't plot yet
densCarrot <- density(carrots)
densCuke <- density(cukes)
## calculate the range of the graph
xlim <- range(densCuke$x,densCarrot$x)
ylim <- range(0,densCuke$y, densCarrot$y)
#pick the colours
carrotCol <- rgb(1,0,0,0.2)
cukeCol <- rgb(0,0,1,0.2)
## plot the carrots and set up most of the plot parameters
plot(densCarrot, xlim = xlim, ylim = ylim, xlab = 'Lengths',
     main = 'Distribution of carrots and cucumbers', 
     panel.first = grid())
#put our density plots in
polygon(densCarrot, density = -1, col = carrotCol)
polygon(densCuke, density = -1, col = cukeCol)
## add a legend in the corner
legend('topleft',c('Carrots','Cucumbers'),
       fill = c(carrotCol, cukeCol), bty = 'n',
       border = NA)

在此处输入图像描述

于 2010-08-22T16:36:24.853 回答
12

@Dirk Eddelbuettel:基本思想很棒,但可以改进所示代码。[需要很长时间才能解释,因此需要单独的答案而不是评论。]

hist()函数默认绘制绘图,因此您需要添加该plot=FALSE选项。此外,通过plot(0,0,type="n",...)调用可以更清楚地建立绘图区域,您可以在其中添加轴标签、绘图标题等。最后,我想提一下,还可以使用阴影来区分两个直方图。这是代码:

set.seed(42)
p1 <- hist(rnorm(500,4),plot=FALSE)
p2 <- hist(rnorm(500,6),plot=FALSE)
plot(0,0,type="n",xlim=c(0,10),ylim=c(0,100),xlab="x",ylab="freq",main="Two histograms")
plot(p1,col="green",density=10,angle=135,add=TRUE)
plot(p2,col="blue",density=10,angle=45,add=TRUE)

这是结果(由于 RStudio 有点太宽了 :-)):

在此处输入图像描述

于 2014-10-09T15:18:43.073 回答
6

Plotly 的 R API可能对您有用。下图在这里

library(plotly)
#add username and key
p <- plotly(username="Username", key="API_KEY")
#generate data
x0 = rnorm(500)
x1 = rnorm(500)+1
#arrange your graph
data0 = list(x=x0,
         name = "Carrots",
         type='histogramx',
         opacity = 0.8)

data1 = list(x=x1,
         name = "Cukes",
         type='histogramx',
         opacity = 0.8)
#specify type as 'overlay'
layout <- list(barmode='overlay',
               plot_bgcolor = 'rgba(249,249,251,.85)')  
#format response, and use 'browseURL' to open graph tab in your browser.
response = p$plotly(data0, data1, kwargs=list(layout=layout))

url = response$url
filename = response$filename

browseURL(response$url)

全面披露:我在团队中。

图形

于 2014-01-23T06:11:11.123 回答
1

这么多很好的答案,但由于我刚刚编写了一个函数(plotMultipleHistograms()'basicPlotteR'包中)来执行此操作,我想我会添加另一个答案。

此函数的优点是它会自动设置适当的 X 和 Y 轴限制,并定义一组通用的 bin,它在所有分布中使用。

以下是如何使用它:

# Install the plotteR package
install.packages("devtools")
devtools::install_github("JosephCrispell/basicPlotteR")
library(basicPlotteR)

# Set the seed
set.seed(254534)

# Create random samples from a normal distribution
distributions <- list(rnorm(500, mean=5, sd=0.5), 
                      rnorm(500, mean=8, sd=5), 
                      rnorm(500, mean=20, sd=2))

# Plot overlapping histograms
plotMultipleHistograms(distributions, nBins=20, 
                       colours=c(rgb(1,0,0, 0.5), rgb(0,0,1, 0.5), rgb(0,1,0, 0.5)), 
                       las=1, main="Samples from normal distribution", xlab="Value")

在此处输入图像描述

plotMultipleHistograms()函数可以采用任意数量的分布,并且所有通用绘图参数都应与它一起使用(例如:lasmain等)。

于 2019-04-23T16:48:27.813 回答