在以下代码中:
# Load dataset
iris = datasets.load_iris()
X, y = iris.data, iris.target
rf_feature_imp = RandomForestClassifier(100)
feat_selection = SelectFromModel(rf_feature_imp, threshold=0.5)
clf = RandomForestClassifier(5000)
model = Pipeline([
('fs', feat_selection),
('clf', clf),
])
params = {
'fs__threshold': [0.5, 0.3, 0.7],
'fs__estimator__max_features': ['auto', 'sqrt', 'log2'],
'clf__max_features': ['auto', 'sqrt', 'log2'],
}
gs = GridSearchCV(model, params, ...)
gs.fit(X,y)
应该使用什么进行预测?
gs
?gs.best_estimator_
? 或者gs.best_estimator_.named_steps['clf']
?
这3个有什么区别?