我想将为 aov() 编写的代码转换为 car-package 中的 Anova() 函数。
anovadata3 <- within(anovadata3, {
subject <- factor(subject)
time <- factor(time)
gender <- factor(gender)
group <- factor(group)
groupgender <- factor(groupgender)
})
anovadata3.aov <- aov(values ~ time*group*gender + Error(subject),
data = anovadata3)
summary(anovadata3.aov)
这段代码给了我以下输出:
Error: subject
Df Sum Sq Mean Sq F value Pr(>F)
group 1 32220 32220 8.632 0.00365 **
gender 1 30 30 0.008 0.92819
group:gender 1 15 15 0.004 0.94952
Residuals 221 824913 3733
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
time 3 21160 7053 9.223 5.53e-06 ***
time:group 3 18338 6113 7.993 3.06e-05 ***
time:gender 3 1916 639 0.835 0.47486
time:group:gender 3 11679 3893 5.091 0.00172 **
Residuals 663 507012 765
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
但是,当我尝试使用 car-package 中的 Anova() 函数时,我会:
library(car)
mlm <- lm(values ~ time*group*gender, data = anovadata3)
rfactor <- factor(c("time", "gender","group","groupgender","subject"))
anovadata3.aov <- Anova(mlm, idata = dataframe(rfactor), idesign = ~ rfactor, type ="III")
summary(anovadata3.aov)
这给了我这个输出。
Sum Sq Df F value Pr(>F)
Min. : 58.3 Min. : 1 Min. : 0.03871 Min. :0.00000
1st Qu.: 1324.9 1st Qu.: 1 1st Qu.: 0.54230 1st Qu.:0.04997
Median : 10281.5 Median : 3 Median : 1.57697 Median :0.21357
Mean : 196286.3 Mean :100 Mean : 34.03103 Mean :0.31053
3rd Qu.: 12290.4 3rd Qu.: 3 3rd Qu.: 2.61758 3rd Qu.:0.50989
Max. :1331924.5 Max. :884 Max. :262.67095 Max. :0.84408
NA's :1 NA's :1
有谁知道我如何重新制作用于 aov() 的代码以适应 Anova()。我尝试遵循以下教程: https ://gribblelab.wordpress.com/2009/03/09/repeated-measures-anova-using-r/
尝试使 Anova() 正确。但它没有给出看起来相似的输出。我还从网页上看到,假设给 Mauchlys 和 Greenhouse,我没有得到。还有谁知道如何在方差分析结果中获得 eta 平方?或者是否有必要使用单独的函数来计算 eta (etaSquared())。
下面的数据用于测试,我正在尝试测试时间、性别和群体之间的“值”是否存在显着差异,以及因素之间的相互作用效应。
values testperiod subject gender group groupgender time
1 118.82660110 Pretest 1 2 2 BSTfemale 1
2 61.07615138 Pretest 2 2 2 BSTfemale 1
3 57.51022740 Pretest 3 2 2 BSTfemale 1
4 70.73637347 Pretest 4 2 2 BSTfemale 1
5 9.86907880 Pretest 5 2 2 BSTfemale 1
6 64.51579546 Pretest 6 2 2 BSTfemale 1
7 63.25669342 Pretest 7 2 2 BSTfemale 1
8 109.09354856 Pretest 8 2 2 BSTfemale 1
9 140.69340502 Pretest 9 2 2 BSTfemale 1
10 93.94269807 Pretest 10 2 2 BSTfemale 1
11 43.76802256 Pretest 11 2 2 BSTfemale 1
...
898 60.85271722 FU_12_month 223 1 2 BSTmale 4
899 82.75598576 FU_12_month 224 1 2 BSTmale 4
900 -32.38497309 FU_12_month 225 1 2 BSTmale 4