我有一个二维数组的参数。它可以很好地获得正确的输出,但是当我尝试对梯度做任何事情(例如优化或 check_total_derivatives)时,我会遇到尺寸错误。我想知道处理 2D 大小的参数的最佳方法是什么。这是一个示例代码:
import numpy as np
from openmdao.api import Group, Problem, Component, IndepVarComp, ExecComp
class C1(Component):
def __init__(self, n):
super(C1, self).__init__()
self.add_param('grid', val=np.zeros((n, n)))
self.add_output('x', shape=1)
self.n = n
def solve_nonlinear(self, params, unknowns, resids):
x = 0
for i in range(self.n):
for j in range(self.n):
x += params['grid'][i][j]
unknowns['x'] = x
def linearize(self, params, unknowns, resids):
J = {}
J['x', 'grid'] = np.ones((self.n, self.n))
return J
class Group1(Group):
def __init__(self, n):
super(Group1, self).__init__()
self.add('grid', IndepVarComp('grid', np.zeros((n, n))), promotes=['*'])
self.add('c1', C1(n), promotes=['*'])
self.add('obj_cmp', ExecComp('obj = -x', x=1.0), promotes=['*'])
n = 3
p = Problem()
p.root = Group1(n)
p.setup(check=False)
p['grid'] = np.ones((n, n))
p.run()
p.check_total_derivatives()
print p['x']
我得到错误:
ValueError: In component 'c1', the derivative of 'x' wrt 'grid' should have shape '(1, 3)' but has shape '(3, 3)' instead.
我觉得这种情况下的导数应该是大小 (3, 3) 因为那是输入参数的大小。你如何处理二维参数?