6

我尝试在 R 中使用 ggplot2 的新功能,它允许创建我们自己的stat_函数。我正在创建一个简单的方法来计算和绘制二维数组上排列的点之间的插值曲面。

我想创建一个 stat_topo() 需要xyval美学,绘制一个简单geom_raster的插值val映射到fill

library(ggplot2)
library(dplyr)
library(akima)

cpt_grp <- function(data, scales) {
  #interpolate data in 2D
  itrp <- akima::interp(data$x,data$y,data$val,linear=F,extrap=T)
  out <- expand.grid(x=itrp$x, y=itrp$y,KEEP.OUT.ATTRS = F)%>%
    mutate(fill=as.vector(itrp$z))
  # str(out)
  return(out)
}

StatTopo <- ggproto("StatTopo", Stat,
                    compute_group = cpt_grp,
                    required_aes = c("x","y","val")
)
stat_topo <- function(mapping = NULL, data = NULL, geom = "raster",
                       position = "identity", na.rm = FALSE, show.legend = NA, 
                       inherit.aes = TRUE, ...) {
  layer(
    stat = StatTopo, data = data, mapping = mapping, geom = geom, 
    position = position, show.legend = show.legend, inherit.aes = inherit.aes,
    params = list(na.rm = na.rm, ...)
  )
}

set.seed(1)
nchan <- 30
d <- data.frame(val = rnorm(nchan), # some random values to be mapped to fill color
         x = 1:nchan*cos(1:nchan), # the x and y position of the points to interpolate
         y = 1:nchan*sin(1:nchan))
plot(d$x,d$y)

ggplot(d,aes(x=x,y=y,val=val)) +
  stat_topo() +
  geom_point()

当我运行它时,我收到以下错误:

Error: numerical color values must be >= 0, found -1

我知道这是因为不知何故fill美学的尺度被设置为离散的。

如果我输入这个:

ggplot(d,aes(x=x,y=y,val=val)) +
  stat_topo() +
  scale_fill_continuous() +
  geom_point()

我得到了我想要的:具有连续色标的预期光栅,我希望默认stat_这样做......

在此处输入图像描述

所以我想问题是:如何防止 ggplot 在此处设置离散比例,并理想地在对我的新stat_函数的调用中设置默认比例。

4

2 回答 2

2

显然,当在函数中创建一个新变量时stat_,需要明确地将其与将映射到的美学与default_aes = aes(fill = ..fill..)ggproto 定义中的参数相关联。

这告诉 ggplot 它是一种经过计算的美学,它将根据数据类型选择一个比例。

所以这里我们需要定义stat_如下:

cpt_grp <- function(data, scales) {
  # interpolate data in 2D
  itrp <- akima::interp(data$x,data$y,data$val,linear=F,extrap=T)
  out <- expand.grid(x=itrp$x, y=itrp$y,KEEP.OUT.ATTRS = F)%>%
    mutate(fill=as.vector(itrp$z))
  # str(out)
  return(out)
}

StatTopo <- ggproto("StatTopo", Stat,
                    compute_group = cpt_grp,
                    required_aes = c("x","y","val"),
                    default_aes = aes(fill = ..fill..)
)

stat_topo <- function(mapping = NULL, data = NULL, geom = "raster",
                      position = "identity", na.rm = FALSE, show.legend = NA, 
                      inherit.aes = TRUE, ...) {
  layer(
    stat = StatTopo, data = data, mapping = mapping, geom = geom, 
    position = position, show.legend = show.legend, inherit.aes = inherit.aes,
    params = list(na.rm = na.rm, ...)    
  )
}

然后是下面的代码:

set.seed(1)
nchan <- 30
d <- data.frame(val = rnorm(nchan),
                x = 1:nchan*cos(1:nchan),
                y = 1:nchan*sin(1:nchan))
ggplot(d,aes(x=x,y=y,val=val)) +
  stat_topo() +
  geom_point()

按预期产生:

stat_topo 的结果

无需scale_手动指定,但可以像往常一样轻松调整比例,例如scale_fill_gradient2(low = 'blue',mid='white',high='red')

我在这里得到了这个答案:https ://github.com/hadley/ggplot2/issues/1481

于 2016-01-12T22:13:11.510 回答
1

好的,睡在上面,并有了一个想法,我认为这可能会满足您的需求。在您的stat_topo图层函数中,ggproto我返回了一个列表,其中它作为第一个元素,然后ggproto通过调用将另一个添加到该列表中scale_fill_continuous()

library(ggplot2)
library(dplyr)
library(akima)

cpt_grp <- function(data, scales) {
  #interpolate data in 2D
  itrp <- akima::interp(data$x,data$y,data$val,linear=F,extrap=T)
  out <- expand.grid(x=itrp$x, y=itrp$y,KEEP.OUT.ATTRS = F)%>%
    mutate(fill=as.vector(itrp$z))
  return(out)
}
StatTopo <- ggproto("StatTopo", Stat,
                    compute_group = cpt_grp,
                    required_aes = c("x","y","val")
)
stat_topo <- function(mapping = NULL, data = NULL, geom = "raster",
                      position = "identity", na.rm = FALSE, show.legend = NA, 
                      inherit.aes = TRUE, ...) {
  list(
    layer(
      stat = StatTopo, data = data, mapping = mapping, geom = geom, 
      position = position, show.legend = show.legend, inherit.aes = inherit.aes,
      params = list(na.rm = na.rm )
    ),
    scale_fill_continuous()
  )
}
set.seed(1)
nchan <- 30
d <- data.frame(val = rnorm(nchan), # some random values to be mapped to fill color
                x = 1:nchan*cos(1:nchan), # the x and y position of interp points
                y = 1:nchan*sin(1:nchan))
 ggplot(d,aes(x=x,y=y,val=val)) +
   stat_topo() +
   geom_point()

产生与上面相同的图片。

于 2016-01-11T07:02:34.163 回答