-1

这是mydata的一部分:

原始数据很大,所以我上传了一部分,有 20 行。

x <- [7.6,2.2,1.1,4.7,8.6,7.5,7.5,29.9,5.0,3.0,2.4,1.5,14.9,3.9,3.7,3.2,5.0,1.7,2.9,2.3]

这是功能说明

  1. 幂律:y=A*x^-(u)
  2. 指数:y=B*exp^(-βx)

现在,我想使用 MLE(最大似然法)来获得u幂律和β指数分布。

#set likelihood function of power law
pl <- function(u){-n*log(u-1)-n*(u-1)*log(min(x))+u*sum(log(x))}

#set likelihood function of exponential distribution
ex <- function(β){-n*log(β)+β*sum(x)}

这些功能对吗?

使用 mle2() 获取参数:

#get the parameter u of power law
s1 <- mle2(pl,start = list(u=2),data = list(x))
summary(s1)
#get the parameter lamda of exponential distribution
s2 <- mle2(ex,start = list(β=2),data = list(x))
summary(s2)

现在有两个问题:

  1. 如何确定哪一个最适合模型

    使用 confint() 可以获得 95% CI,如何获得两个模型的 Rsquared 和 AIC(Akaike weigths)?

  2. 在我得到哪个最适合数据后,如何在原始数据上方绘制拟合图?

我在 Windows 7 中使用 R.3.2.2。

4

1 回答 1

0

几乎如你所料。您尚未指定数据的条件分布,因此我将假设正态性。(鉴于此,您也可以使用nls()- 最小二乘法正态同方差响应的最大似然估计),尽管mle2为使用优化器等提供了更多的空间。)

我将使用公式接口,如果您的模型不太复杂,这很方便。

幂律

mle2(y~dnorm(mean=A*x^(-mu),sd=exp(logsd),
     start=list(A=...,mu=...,logsd=...),
     ## no need for list() if mydata is already data.frame
     data=mydata)   

指数的

  mle2(y~dnorm(mean=B*exp(-beta*x),sd=exp(logsd),
     start=list(B=...,beta=...,logsd=...),
     data=mydata)  

...其中的元素start是任何合理的起始值。鉴于您上面的数据,这些方法应该在数据的子集上合理地工作。但是,它们可能在 1000 万次观测中表现不佳。我会考虑使用

glm(y~x,family=gaussian(link="log"),data=mydata)

拟合指数曲线和

glm(y~log(x),family=gaussian(link="log"),data=mydata)

来拟合幂律曲线。

于 2015-12-02T02:48:32.773 回答