4

我们正在尝试使用 Spark 上的 MLLIB 在 python 中训练具有指定初始模型的高斯混合模型 (GMM)。pyspark 的 Doc 1.5.1 说我们应该使用 GaussianMixtureModel 对象作为 GaussianMixture.train 方法的“initialModel”参数的输入。在创建我们自己的初始模型(例如,计划使用 Kmean 结果)之前,我们只是想测试这个场景。因此,我们尝试使用来自第一次训练的输出的 GaussianMixtureModel 初始化第二次训练。但是这个简单的场景会引发错误。你能帮我们确定这里发生了什么吗?非常感谢纪尧姆

PS:我们用 hadoop 2.6 运行 (py) spark 1.5.1

以下是简单的场景代码和错误:

from pyspark.mllib.clustering import GaussianMixture
from numpy import array
import sys
import os
import pyspark

### Local default options
K=2 # "k" (int) Set the number of Gaussians in the mixture model.  Default: 2
convergenceTol=1e-3 # "convergenceTol" (double) Set the largest change in log-likelihood at which convergence is considered to have occurred.
maxIterations=100 # "maxIterations" (int) Set the maximum number of iterations to run. Default: 100
seed=None # "seed" (long) Set the random seed
initialModel=None

### Load and parse the sample data
data = sc.textFile("gmm_data.txt") # Data from the dummy set here: data/mllib/gmm_data.txt
parsedData = data.map(lambda line: array([float(x) for x in line.strip().split(' ')]))
print type(parsedData)
print type(parsedData.first())

### 1st training: Build the GMM
gmm = GaussianMixture.train(parsedData, K, convergenceTol,
maxIterations, seed, initialModel)

# output parameters of model
for i in range(2):
    print ("weight = ", gmm.weights[i], "mu = ", gmm.gaussians[i].mu,
        "sigma = ", gmm.gaussians[i].sigma.toArray())

### 2nd training: Re-build a GMM using an initial model
initialModel = gmm
print type(initialModel)
gmm = GaussianMixture.train(parsedData, K, convergenceTol, maxIterations, seed, initialModel)

这是带有错误的输出:

<class 'pyspark.rdd.PipelinedRDD'>
<type 'numpy.ndarray'>
('weight = ', 0.51945003367044018, 'mu = ', DenseVector([-0.1045,
0.0429]), 'sigma = ', array([[ 4.90706817, -2.00676881],
       [-2.00676881,  1.01143891]]))
('weight = ', 0.48054996632955982, 'mu = ', DenseVector([0.0722,
0.0167]), 'sigma = ', array([[ 4.77975653,  1.87624558],
       [ 1.87624558,  0.91467242]]))
<class 'pyspark.mllib.clustering.GaussianMixtureModel'>

---------------------------------------------------------------------------
Py4JJavaError                             Traceback (most recent call last)
<ipython-input-30-0008fe75eb61> in <module>()
     33 initialModel = gmm
     34 print type(initialModel)
---> 35 gmm = GaussianMixture.train(parsedData, K, convergenceTol,
maxIterations, seed, initialModel) #

/opt/spark/spark-1.5.1-bin-hadoop2.6/python/pyspark/mllib/clustering.pyc
in train(cls, rdd, k, convergenceTol, maxIterations, seed,
initialModel)
    306         java_model =
callMLlibFunc("trainGaussianMixtureModel",
rdd.map(_convert_to_vector),
    307                                    k, convergenceTol,
maxIterations, seed,
--> 308                                    initialModelWeights,
initialModelMu, initialModelSigma)
    309         return GaussianMixtureModel(java_model)
    310

/opt/spark/spark-1.5.1-bin-hadoop2.6/python/pyspark/mllib/common.pyc
in callMLlibFunc(name, *args)
    128     sc = SparkContext._active_spark_context
    129     api = getattr(sc._jvm.PythonMLLibAPI(), name)
--> 130     return callJavaFunc(sc, api, *args)
    131
    132

/opt/spark/spark-1.5.1-bin-hadoop2.6/python/pyspark/mllib/common.pyc
in callJavaFunc(sc, func, *args)
    120 def callJavaFunc(sc, func, *args):
    121     """ Call Java Function """
--> 122     args = [_py2java(sc, a) for a in args]
    123     return _java2py(sc, func(*args))
    124

/opt/spark/spark-1.5.1-bin-hadoop2.6/python/pyspark/mllib/common.pyc
in _py2java(sc, obj)
     86     else:
     87         data = bytearray(PickleSerializer().dumps(obj))
---> 88         obj = sc._jvm.SerDe.loads(data)
     89     return obj
     90

/opt/spark/spark-1.5.1-bin-hadoop2.6/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py
in __call__(self, *args)
    536         answer = self.gateway_client.send_command(command)
    537         return_value = get_return_value(answer, self.gateway_client,
--> 538                 self.target_id, self.name)
    539
    540         for temp_arg in temp_args:

/opt/spark/spark-1.5.1-bin-hadoop2.6/python/pyspark/sql/utils.pyc in
deco(*a, **kw)
     34     def deco(*a, **kw):
     35         try:
---> 36             return f(*a, **kw)
     37         except py4j.protocol.Py4JJavaError as e:
     38             s = e.java_exception.toString()

/opt/spark/spark-1.5.1-bin-hadoop2.6/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py
in get_return_value(answer, gateway_client, target_id, name)
    298                 raise Py4JJavaError(
    299                     'An error occurred while calling {0}{1}{2}.\n'.
--> 300                     format(target_id, '.', name), value)
    301             else:
    302                 raise Py4JError(

Py4JJavaError: An error occurred while calling
z:org.apache.spark.mllib.api.python.SerDe.loads.
: net.razorvine.pickle.PickleException: expected zero arguments for
construction of ClassDict (for numpy.core.multiarray._reconstruct)
at net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23)
at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:701)
at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:171)
at net.razorvine.pickle.Unpickler.load(Unpickler.java:85)
at net.razorvine.pickle.Unpickler.loads(Unpickler.java:98)
at org.apache.spark.mllib.api.python.SerDe$.loads(PythonMLLibAPI.scala:1462)
at org.apache.spark.mllib.api.python.SerDe.loads(PythonMLLibAPI.scala)
at sun.reflect.GeneratedMethodAccessor31.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:379)
at py4j.Gateway.invoke(Gateway.java:259)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:207)
at java.lang.Thread.run(Thread.java:745)
4

1 回答 1

1

这是一个错误,应该已经修复master并分支 1.4-1.6。请参阅SPARK-12006相应的 PR

于 2016-01-06T21:14:12.940 回答