我正在尝试使用 cusolver 库来求解许多线性方程,但引发了一个非常奇怪的异常。该代码仅使用库中的一个函数,其余的是内存分配和内存复制。功能是
cusolverSpScsrlsvcholHost(
cusolverSpHandle_t handle, int m, int nnz,
const cusparseMatDescr_t descrA, const float *csrVal,
const int *csrRowPtr, const int *csrColInd, const float *b,
float tol, int reorder, float *x, int *singularity);
我认为我的问题可能在于 tol - reorder - 奇点参数,因为其余的是矩阵参数这里是代码:
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <cuda.h>
#include <cusparse.h>
#include <cublas_v2.h>
#include <stdio.h>
#include <cusolverSp.h>
int main()
{
//initialize our test cases
const int size = 3;
int nnz = 6 ;
int sing = -1 ;
//float values[] = {0,0,0,0} ;
float values[] = {1,2,3,4,5,6} ;
int colIdx[] = {0,0,1,0,1,2};
int rowPtr[] = {0, 1,3,7};
float x[] = {4,-6,7};
float y[3]= {0,0,0} ;
float *dev_values = 0 ;
int *dev_rowPtr = 0 ;
int *dev_colIdx = 0 ;
float *dev_x = 0 ;
float *dev_y = 0 ;
cusolverSpHandle_t solver_handle ;
cusolverSpCreate(&solver_handle) ;
cusparseMatDescr_t descr = 0;
cusparseCreateMatDescr(&descr);
cusparseSetMatType(descr,CUSPARSE_MATRIX_TYPE_GENERAL);
cusparseSetMatIndexBase(descr,CUSPARSE_INDEX_BASE_ZERO);
// Choose which GPU to run on, change this on a multi-GPU system.
cudaSetDevice(0);
cudaEvent_t start, stop;
float time;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, 0);
// Allocate GPU buffers for three vectors (two input, one output) .
cudaMalloc((void**)&dev_x, size * sizeof(float));
cudaMalloc((void**)&dev_y, size * sizeof(float));
cudaMalloc((void**)&dev_values, nnz * sizeof(float));
cudaMalloc((void**)&dev_rowPtr, (size + 1) * sizeof(int));
cudaMalloc((void**)&dev_colIdx, nnz * sizeof(int));
//Memcpy
cudaMemcpyAsync(dev_x, x, size * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpyAsync(dev_values, values, nnz * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpyAsync(dev_rowPtr, rowPtr, (size + 1) * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpyAsync(dev_colIdx, colIdx, nnz * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpyAsync(dev_y, y, size * sizeof(float), cudaMemcpyHostToDevice);
cusolverSpScsrlsvluHost(solver_handle, size, nnz, descr, dev_values, dev_rowPtr, dev_colIdx, dev_y, 0,0, dev_x, &sing);
cudaMemcpyAsync(y, dev_y, size*sizeof(float), cudaMemcpyDeviceToHost );
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&time, start, stop);
printf ("Time for the kernel: %f ms\n", time);
printf("%f\n",y[0]);
printf("%f\n",y[1]);
printf("%f\n",y[2]);
// cudaDeviceReset must be called before exiting in order for profiling and
// tracing tools such as Nsight and Visual Profiler to show complete traces.
cudaDeviceReset();
cudaFree(dev_x);
cudaFree(dev_y);
cudaFree(dev_values);
cudaFree(dev_rowPtr);
cudaFree(dev_colIdx);
return 1;
}