您也可以rollRegres
按如下方式使用该包
# setup data
Probes <- data.frame(
# I changed the days to be intergers
Days=seq(1L, 491L, 1L),
B1=5:495, B2=-100:390, B3=10:500 , B4=-200:290)
# setup grp argument
grp_arg <- as.integer((Probes$Days - 1L) %/% 6)
# estimate coefs. width argument is realtive in grp units
library(rollRegres)
X <- cbind(1, Probes$Days / 100)
Ys <- as.matrix(Probes[, 2:5])
out <- lapply(1:ncol(Ys), function(i)
roll_regres.fit(x = X, y = Ys[, i], width = 2L, grp = grp_arg)$coefs)
out <- do.call(cbind, out)
# only keep the complete.cases and the unique values
colnames(out) <- sapply(1:4, function(i) paste0("B", i, 0:1))
out <- out[c(T, grp_arg[-1] != head(grp_arg, -1)), ]
out <- out[complete.cases(out), ]
head(out)
#R B10 B11 B20 B21 B30 B31 B40 B41
#R [1,] 4 100 -101 100 9 100 -201 100
#R [2,] 4 100 -101 100 9 100 -201 100
#R [3,] 4 100 -101 100 9 100 -201 100
#R [4,] 4 100 -101 100 9 100 -201 100
#R [5,] 4 100 -101 100 9 100 -201 100
#R [6,] 4 100 -101 100 9 100 -201 100
zoo
该解决方案比例如解决方案快得多
library(zoo) coefs <- function(z) c(unlist(as.data.frame(coef(lm(z[,-1] ~ z[,1]))))) microbenchmark::microbenchmark( rollapply = {
z <- zoo(Probes, Probes[[1]])
rz <- rollapply(z, 12, by = 6, coefs, by.column = FALSE, align = "left") }, roll_regres = {
grp_arg <- as.integer((Probes$Days - 1L) %/% 6)
X <- cbind(1, Probes$Days / 100)
Ys <- as.matrix(Probes[, 2:5])
out <- lapply(1:ncol(Ys), function(i)
roll_regres.fit(x = X, y = Ys[, i], width = 2L, grp = grp_arg)$coefs)
out <- do.call(cbind, out)
colnames(out) <- sapply(1:4, function(i) paste0("B", i, 0:1))
out <- out[c(T, grp_arg[-1] != head(grp_arg, -1)), ]
out <- out[complete.cases(out), ]
head(out) } )
#R Unit: microseconds
#R expr min lq mean median uq max neval
#R rollapply 53392.614 56330.492 59793.106 58363.2825 60902.938 119206.76 100
#R roll_regres 865.186 920.297 1074.161 983.9015 1047.705 5071.41 100
目前你需要从 Github 安装包,因为 version 的验证出错0.1.0
。因此,运行
devtools::install_github("boennecd/rollRegres", upgrade_dependencies = FALSE,
build_vignettes = TRUE)