5

我正在尝试使用 caffe 为图像实现像素级二进制分类。对于每个尺寸为 3x256x256 的图像,我有一个 256x256 标签数组,其中每个条目都标记为 0 或 1。此外,当我使用以下代码读取我的 HDF5 文件时,

dirname = "examples/hdf5_classification/data"

f = h5py.File(os.path.join(dirname, 'train.h5'), "r")
ks = f.keys()
data = np.array(f[ks[0]])
label = np.array(f[ks[1]])
print "Data dimension from HDF5", np.shape(data)
print "Label dimension from HDF5", np.shape(label)

我得到的数据和标签维度为

Data dimension from HDF5 (402, 3, 256, 256)
Label dimension from HDF5 (402, 256, 256)

我正在尝试将此数据输入给定的 hdf5 分类网络,并且在训练时,我有以下输出(使用默认求解器,但在 GPU 模式下)。

!cd /home/unni/MTPMain/caffe-master/ && ./build/tools/caffe train -solver examples/hdf5_classification/solver.prototxt

I1119 01:29:02.222512 11910 caffe.cpp:184] Using GPUs 0
I1119 01:29:02.509752 11910 solver.cpp:47] Initializing solver from parameters: 
train_net: "examples/hdf5_classification/train_val.prototxt"
test_net: "examples/hdf5_classification/train_val.prototxt"
test_iter: 250
test_interval: 1000
base_lr: 0.01
display: 1000
max_iter: 10000
lr_policy: "step"
gamma: 0.1
momentum: 0.9
weight_decay: 0.0005
stepsize: 5000
snapshot: 10000
snapshot_prefix: "examples/hdf5_classification/data/train"
solver_mode: GPU
device_id: 0
I1119 01:29:02.519805 11910 solver.cpp:80] Creating training net from train_net file: examples/hdf5_classification/train_val.prototxt
I1119 01:29:02.520031 11910 net.cpp:322] The NetState phase (0) differed from the phase (1) specified by a rule in layer data
I1119 01:29:02.520053 11910 net.cpp:322] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy
I1119 01:29:02.520104 11910 net.cpp:49] Initializing net from parameters: 
name: "LogisticRegressionNet"
state {
  phase: TRAIN
}
layer {
  name: "data"
  type: "HDF5Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  hdf5_data_param {
    source: "examples/hdf5_classification/data/train.txt"
    batch_size: 10
  }
}
layer {
  name: "fc1"
  type: "InnerProduct"
  bottom: "data"
  top: "fc1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 2
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "fc1"
  bottom: "label"
  top: "loss"
}
I1119 01:29:02.520256 11910 layer_factory.hpp:76] Creating layer data
I1119 01:29:02.520277 11910 net.cpp:106] Creating Layer data
I1119 01:29:02.520290 11910 net.cpp:411] data -> data
I1119 01:29:02.520331 11910 net.cpp:411] data -> label
I1119 01:29:02.520352 11910 hdf5_data_layer.cpp:80] Loading list of HDF5 filenames from: examples/hdf5_classification/data/train.txt
I1119 01:29:02.529341 11910 hdf5_data_layer.cpp:94] Number of HDF5 files: 1
I1119 01:29:02.542645 11910 hdf5.cpp:32] Datatype class: H5T_FLOAT
I1119 01:29:10.601307 11910 net.cpp:150] Setting up data
I1119 01:29:10.612926 11910 net.cpp:157] Top shape: 10 3 256 256 (1966080)
I1119 01:29:10.612963 11910 net.cpp:157] Top shape: 10 256 256 (655360)
I1119 01:29:10.612969 11910 net.cpp:165] Memory required for data: 10485760
I1119 01:29:10.612983 11910 layer_factory.hpp:76] Creating layer fc1
I1119 01:29:10.624948 11910 net.cpp:106] Creating Layer fc1
I1119 01:29:10.625015 11910 net.cpp:454] fc1 <- data
I1119 01:29:10.625039 11910 net.cpp:411] fc1 -> fc1
I1119 01:29:10.645814 11910 net.cpp:150] Setting up fc1
I1119 01:29:10.645864 11910 net.cpp:157] Top shape: 10 2 (20)
I1119 01:29:10.645875 11910 net.cpp:165] Memory required for data: 10485840
I1119 01:29:10.645912 11910 layer_factory.hpp:76] Creating layer loss
I1119 01:29:10.657094 11910 net.cpp:106] Creating Layer loss
I1119 01:29:10.657133 11910 net.cpp:454] loss <- fc1
I1119 01:29:10.657147 11910 net.cpp:454] loss <- label
I1119 01:29:10.657163 11910 net.cpp:411] loss -> loss
I1119 01:29:10.657189 11910 layer_factory.hpp:76] Creating layer loss
F1119 01:29:14.883095 11910 softmax_loss_layer.cpp:42] Check failed: outer_num_ * inner_num_ == bottom[1]->count() (10 vs. 655360) Number of labels must match number of predictions; e.g., if softmax axis == 1 and prediction shape is (N, C, H, W), label count (number of labels) must be N*H*W, with integer values in {0, 1, ..., C-1}.
*** Check failure stack trace: ***
    @     0x7f0652e1adaa  (unknown)
    @     0x7f0652e1ace4  (unknown)
    @     0x7f0652e1a6e6  (unknown)
    @     0x7f0652e1d687  (unknown)
    @     0x7f0653494219  caffe::SoftmaxWithLossLayer<>::Reshape()
    @     0x7f065353f50f  caffe::Net<>::Init()
    @     0x7f0653541f05  caffe::Net<>::Net()
    @     0x7f06535776cf  caffe::Solver<>::InitTrainNet()
    @     0x7f0653577beb  caffe::Solver<>::Init()
    @     0x7f0653578007  caffe::Solver<>::Solver()
    @     0x7f06535278b3  caffe::Creator_SGDSolver<>()
    @           0x410831  caffe::SolverRegistry<>::CreateSolver()
    @           0x40a16b  train()
    @           0x406908  main
    @     0x7f065232cec5  (unknown)
    @           0x406e28  (unknown)
    @              (nil)  (unknown)
Aborted

基本上错误是

softmax_loss_layer.cpp:42] Check failed: 
outer_num_ * inner_num_ == bottom[1]->count() (10 vs. 655360) 
Number of labels must match number of predictions; 
e.g., if softmax axis == 1 and prediction shape is (N, C, H, W), 
label count (number of labels) must be N*H*W, 
with integer values in {0, 1, ..., C-1}.

我无法理解为什么预期的标签数量与我的批量大小相同。我应该如何解决这个问题?这是我的标签方法有问题吗?

4

1 回答 1

2

您的问题是该"SoftmaxWithLoss"层尝试将每个输入图像的 2 个元素的预测向量与每个图像大小为 256×256 的标签进行比较。
这是没有意义的。

错误的根本原因:我猜您厌倦了将二进制分类器应用于图像中的每个像素。为此,您将“fc1”定义为"InnerProduct"带有num_output=2. 但是,caffe 看到这一点的方式是,您将一个二进制分类器应用于整个图像。因此,caffe 为您提供了对整个图像的单一二进制预测。

如何解决:在进行逐像素预测时,您不再需要使用"InnerProduct"层,并且您拥有“完全卷积网络”。如果您“fc1”替换为卷积层(例如检查每个像素的 5×5 环境并根据此补丁做出决定的内核):

layer {
  name: "bin_class"
  type: "Convolution"
  bottom: "data"
  top: "bin_class"
  convolution_param {
    num_output: 2 # binary class output
    kernel_size: 5 # 5-by-5 patch for prediciton
    pad: 2 # make sure spatial output size equals size of label 
  }
}

现在申请"SoftmaxWithLoss"并且bottom: bin_class应该bottom: label工作。

于 2015-11-19T09:14:51.923 回答