我创建了一个简单的 Java 应用程序,它使用 Apache Spark 从 Cassandra 检索数据,对其进行一些转换并将其保存在另一个 Cassandra 表中。
我正在使用以独立集群模式配置的 Apache Spark 1.4.1,在我的机器上只有一个主从模式。
DataFrame customers = sqlContext.cassandraSql("SELECT email, first_name, last_name FROM customer " +
"WHERE CAST(store_id as string) = '" + storeId + "'");
DataFrame customersWhoOrderedTheProduct = sqlContext.cassandraSql("SELECT email FROM customer_bought_product " +
"WHERE CAST(store_id as string) = '" + storeId + "' AND product_id = " + productId + "");
// We need only the customers who did not order the product
// We cache the DataFrame because we use it twice.
DataFrame customersWhoHaventOrderedTheProduct = customers
.join(customersWhoOrderedTheProduct
.select(customersWhoOrderedTheProduct.col("email")), customers.col("email").equalTo(customersWhoOrderedTheProduct.col("email")), "leftouter")
.where(customersWhoOrderedTheProduct.col("email").isNull())
.drop(customersWhoOrderedTheProduct.col("email"))
.cache();
int numberOfCustomers = (int) customersWhoHaventOrderedTheProduct.count();
Date reportTime = new Date();
// Prepare the Broadcast values. They are used in the map below.
Broadcast<String> bStoreId = sparkContext.broadcast(storeId, classTag(String.class));
Broadcast<String> bReportName = sparkContext.broadcast(MessageBrokerQueue.report_did_not_buy_product.toString(), classTag(String.class));
Broadcast<java.sql.Timestamp> bReportTime = sparkContext.broadcast(new java.sql.Timestamp(reportTime.getTime()), classTag(java.sql.Timestamp.class));
Broadcast<Integer> bNumberOfCustomers = sparkContext.broadcast(numberOfCustomers, classTag(Integer.class));
// Map the customers to a custom class, thus adding new properties.
DataFrame storeCustomerReport = sqlContext.createDataFrame(customersWhoHaventOrderedTheProduct.toJavaRDD()
.map(row -> new StoreCustomerReport(bStoreId.value(), bReportName.getValue(), bReportTime.getValue(), bNumberOfCustomers.getValue(), row.getString(0), row.getString(1), row.getString(2))), StoreCustomerReport.class);
// Save the DataFrame to cassandra
storeCustomerReport.write().mode(SaveMode.Append)
.option("keyspace", "my_keyspace")
.option("table", "my_report")
.format("org.apache.spark.sql.cassandra")
.save();
如您所见,我cache
是customersWhoHaventOrderedTheProduct
DataFrame,之后我执行 acount
并调用toJavaRDD
.
根据我的计算,这些动作应该只执行一次。但是,当我进入当前工作的 Spark UI 时,我会看到以下阶段:
如您所见,每个动作都执行了两次。
难道我做错了什么?有没有我错过的设置?
任何想法都非常感谢。
编辑:
我打电话后System.out.println(storeCustomerReport.toJavaRDD().toDebugString());
这是调试字符串:
(200) MapPartitionsRDD[43] at toJavaRDD at DidNotBuyProductReport.java:93 []
| MapPartitionsRDD[42] at createDataFrame at DidNotBuyProductReport.java:89 []
| MapPartitionsRDD[41] at map at DidNotBuyProductReport.java:90 []
| MapPartitionsRDD[40] at toJavaRDD at DidNotBuyProductReport.java:89 []
| MapPartitionsRDD[39] at toJavaRDD at DidNotBuyProductReport.java:89 []
| MapPartitionsRDD[38] at toJavaRDD at DidNotBuyProductReport.java:89 []
| ZippedPartitionsRDD2[37] at toJavaRDD at DidNotBuyProductReport.java:89 []
| MapPartitionsRDD[31] at toJavaRDD at DidNotBuyProductReport.java:89 []
| ShuffledRDD[30] at toJavaRDD at DidNotBuyProductReport.java:89 []
+-(2) MapPartitionsRDD[29] at toJavaRDD at DidNotBuyProductReport.java:89 []
| MapPartitionsRDD[28] at toJavaRDD at DidNotBuyProductReport.java:89 []
| MapPartitionsRDD[27] at toJavaRDD at DidNotBuyProductReport.java:89 []
| MapPartitionsRDD[3] at cache at DidNotBuyProductReport.java:76 []
| CassandraTableScanRDD[2] at RDD at CassandraRDD.scala:15 []
| MapPartitionsRDD[36] at toJavaRDD at DidNotBuyProductReport.java:89 []
| ShuffledRDD[35] at toJavaRDD at DidNotBuyProductReport.java:89 []
+-(2) MapPartitionsRDD[34] at toJavaRDD at DidNotBuyProductReport.java:89 []
| MapPartitionsRDD[33] at toJavaRDD at DidNotBuyProductReport.java:89 []
| MapPartitionsRDD[32] at toJavaRDD at DidNotBuyProductReport.java:89 []
| MapPartitionsRDD[5] at cache at DidNotBuyProductReport.java:76 []
| CassandraTableScanRDD[4] at RDD at CassandraRDD.scala:15 []
编辑2:
因此,经过一些研究并结合试验和错误,我设法优化了这项工作。
我创建了一个 RDD,customersWhoHaventOrderedTheProduct
并在调用操作之前将其缓存count()
。(我将缓存从 移动DataFrame
到RDD
)。
之后,我使用它RDD
来创建storeCustomerReport
DataFrame
.
JavaRDD<Row> customersWhoHaventOrderedTheProductRdd = customersWhoHaventOrderedTheProduct.javaRDD().cache();
现在阶段看起来像这样:
如您所见,这两个count
现在cache
都消失了,但仍然有两个“javaRDD”操作。我不知道它们来自哪里,因为我toJavaRDD
在代码中只调用了一次。