2

我想根据 R 中的某些单词关联创建一个术语网络分析图,但我不知道如何超越绘制整个术语文档矩阵:

# Network analysis
library(igraph)
# load tdm data

# create matrix
Neg.m <- as.matrix(Ntdm_nonsparse)

# to boolean matrix
Neg.m[Neg.m>=1] <- 1

# to term adjacency matrix
# %*% is product of 2 matrices
Neg.m2 <- Neg.m %*% t(Neg.m)
Neg.m2[5:10,5:10]

# build graph with igraph ####
library(igraph)
# build adjacency graph
Neg.g <- graph.adjacency(Neg.m2, weighted=TRUE, mode="undirected")
# remove loops
Neg.g <- simplify(Neg.g)
# set labels and degrees of vertices
V(Neg.g)$label <- V(Neg.g)$name
V(Neg.g)$degree <- degree(Neg.g)

# plot layout fruchterman.reingold
layout1 <- layout.fruchterman.reingold(Neg.g)
plot(Neg.g, layout=layout1, vertex.size=20, 
     vertex.label.color="darkred")

无论如何,是否可以将单词关联网络分析图(以及一般的单词关联条形图)应用于以下findAssocs数据?例如:

findAssocs(Ntdm, "verizon", .06)
$verizon
           att       switched         switch       wireless         basket         09mbps         16mbps 
          0.16           0.13           0.11           0.11           0.10           0.09           0.09 
        32mbps           4gbs           5gbs        cheaper            ima         landry          nudge 
          0.09           0.09           0.09           0.09           0.09           0.09           0.09 
         sears           wink      collapsed      expensive         sprint          -fine           -law 
          0.09           0.09           0.08           0.08           0.08           0.07           0.07 
         11yrs            380            980         alltel        callled         candle           cdma 
          0.07           0.07           0.07           0.07           0.07           0.07           0.07 
       concert    consequence    de-evolving          dimas          doria          fluke           left 
          0.07           0.07           0.07           0.07           0.07           0.07           0.07 
        london           lulz        lyingly           niet        outfits     pocketbook           puny 
          0.07           0.07           0.07           0.07           0.07           0.07           0.07 
     recentely         redraw    reinvesting      reservoir    satellite's         shrimp   stratosphere 
          0.07           0.07           0.07           0.07           0.07           0.07           0.07 
     strighten       switchig      switching        undergo     wheelchair wireless-never          worth 
          0.07           0.07           0.07           0.07           0.07           0.07           0.07 
          yeap           1994            299       cheapest           com'          comin        crushes 
          0.07           0.06           0.06           0.06           0.06           0.06           0.06 
  hhahahahahah          mache          metro      metro-nyc        must've         rising       sabotage 
          0.06           0.06           0.06           0.06           0.06           0.06           0.06 
wholeheartedly 
          0.06 

换句话说,我想可视化特定关键字与 R 中其他关键字的联系,但我不知道如何。

4

1 回答 1

1

按照 ?word_network_plot(包 qdap)中的示例进行操作。

于 2016-03-01T22:30:01.297 回答