我相信 Knuth 算法 D 的修改版本(计算机编程艺术第 2 卷,第 4.3.1 节)应该可以在随机输入的恒定平均时间(最坏情况下为线性时间)中解决问题。显着的简化源于只需要初始迭代产生的第一个商字。
下面是我从 Hacker's Delight中毫不掩饰地改编通用实现的尝试。该实现假定 32 位字和 64 位中间/除法,但可以在更广泛的算术可用的地方自然扩展。
我确实担心该功能实际上未经测试,因此请更多地将其视为一个想法的萌芽,而不是完全成熟的实现。老实说,我什至不记得算法为什么起作用的微妙之处。
// A helper function for finding the position of the most significant set bit.
// Please plug in your intrinsic of choice here
static unsigned int find_first_bit(uint32_t value) {
# ifdef _MSC_VER
unsigned long index;
(void) _BitScanReverse(&index, value);
return index + 1;
# else
unsigned int count = 0;
for(count = 0; value; ++count)
value >>= 1;
return count;
# endif
}
// Multi-word division in 32-bit big-endian segments, returning the most significant
// word of the quotient.
uint32_t divide(const uint32_t *num, const uint32_t *den, size_t len) {
// Skip past leading zero denominator digits. The quotient must fit in a single
// 32-bit word and so only the preceeding numerator digit needs be examined
uint32_t norm_den;
uint64_t norm_num = 0;
size_t top = 0;
while(norm_den = den[top], !norm_den)
norm_num = num[top++];
// Please pad the input to insure at least three denominator words counting from
// the first non-zero digit
assert(len >= top + 3);
// Divide the first two digits of the numerator by the leading digit of the
// denominator as an initial quotient digit guess, yielding an upper bound
// for the quotient at most two steps above the true value.
// Simultaneously normalize the denominator with the MSB in the 31st bit.
unsigned int norm = find_first_bit(norm_den);
norm_num = norm_num << (64 - norm);
norm_num |= ((uint64_t) num[top + 0] << 32 | num[top + 1]) >> norm;
norm_den = ((uint64_t) norm_den << 32 | den[top + 1]) >> norm;
// We are using a straight 64/64 division where 64/32=32 would suffice. The latter
// is available on e.g. x86-32 but difficult to generate short of assembly code.
uint32_t quot = (uint32_t) (norm_num / norm_den);
// Substitute norm_num - quot * norm_den if your optimizer is too thick-headed to
// efficiently extract the remainder
uint32_t rem = norm_num % norm_den;
// Test the next word of the input, reducing the upper bound to within one step
// of the true quotient. See Knuth for proofs of this reduction and the bounds
// of the first guess
norm_num = ((uint64_t) num[top + 1] << 32 | num[top + 2]) >> norm;
norm_num = (uint64_t) rem << 32 | (uint32_t) norm_num;
norm_den = ((uint64_t) den[top + 1] << 32 | den[top + 2]) >> norm;
if((uint64_t) quot * norm_den > norm_num) {
--quot;
// There is no "add-back" step try to avoid and so there is little point
// in looping to refine the guess further since the bound is sufficiently
// tight already
}
// Compare quotient guess multiplied by the denominator to the numerator
// across whole numbers to account for the final quotient step.
// There is no need to bother with normalization here. Furthermore we can
// compare from the most to the least significant and cut off early when the
// intermediate result becomes large, yielding a constant average running
// time for random input
uint64_t accum = 0;
do {
uint64_t prod = (uint64_t) quot * *den++;
accum = accum << 32 | *num++;
// A negative partial result can never recover, so pick the lower
// quotient. A separate test is required to avoid 65-bit arithmetic
if(accum < prod)
return --quot;
accum -= prod;
// Similarly a partial result which spills into the upper 32-bits can't
// recover either, so go with the upper quotient
if((uint64_t) accum >= 0x100000000)
return quot;
} while(--len);
return quot;
}