我正在尝试制作一个计算机视觉程序,它可以在海滩等嘈杂的背景中检测垃圾和随机垃圾(由于沙子而嘈杂)。
原图:
无需任何图像处理的 Canny 边缘检测:
我意识到图像处理技术的某种组合将帮助我完成我的目标,即忽略嘈杂的沙地背景并检测地面上的所有垃圾和物体。
我试图进行中值模糊,调整参数,它给了我这个:
它在忽略沙地背景方面表现良好,但它无法检测到地面上的其他许多物体,可能是因为它被模糊了(不太确定)。
有什么方法可以改进我的算法或图像处理技术,从而忽略嘈杂的沙地背景,同时允许精巧的边缘检测找到所有对象并让程序检测并在所有对象上绘制轮廓。
代码:
from pyimagesearch.transform import four_point_transform
from matplotlib import pyplot as plt
import numpy as np
import cv2
import imutils
im = cv2.imread('images/beach_trash_3.jpg')
#cv2.imshow('Original', im)
# Histogram equalization to improve contrast
###
#im = np.fliplr(im)
im = imutils.resize(im, height = 500)
imgray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
# Contour detection
#ret,thresh = cv2.threshold(imgray,127,255,0)
#imgray = cv2.GaussianBlur(imgray, (5, 5), 200)
imgray = cv2.medianBlur(imgray, 11)
cv2.imshow('Blurred', imgray)
'''
hist,bins = np.histogram(imgray.flatten(),256,[0,256])
plt_one = plt.figure(1)
cdf = hist.cumsum()
cdf_normalized = cdf * hist.max()/ cdf.max()
cdf_m = np.ma.masked_equal(cdf,0)
cdf_m = (cdf_m - cdf_m.min())*255/(cdf_m.max()-cdf_m.min())
cdf = np.ma.filled(cdf_m,0).astype('uint8')
imgray = cdf[imgray]
cv2.imshow('Histogram Normalization', imgray)
'''
'''
imgray = cv2.adaptiveThreshold(imgray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\
cv2.THRESH_BINARY,11,2)
'''
thresh = imgray
#imgray = cv2.medianBlur(imgray,5)
#imgray = cv2.Canny(imgray,10,500)
thresh = cv2.Canny(imgray,75,200)
#thresh = imgray
cv2.imshow('Canny', thresh)
contours, hierarchy = cv2.findContours(thresh.copy(),cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
cnts = sorted(contours, key = cv2.contourArea, reverse = True)[:5]
test = im.copy()
cv2.drawContours(test, cnts, -1,(0,255,0),2)
cv2.imshow('All contours', test)
print '---------------------------------------------'
##### Code to show each contour #####
main = np.array([[]])
for c in cnts:
epsilon = 0.02*cv2.arcLength(c,True)
approx = cv2.approxPolyDP(c,epsilon,True)
test = im.copy()
cv2.drawContours(test, [approx], -1,(0,255,0),2)
#print 'Contours: ', contours
if len(approx) == 4:
print 'Found rectangle'
print 'Approx.shape: ', approx.shape
print 'Test.shape: ', test.shape
# frame_f = frame_f[y: y+h, x: x+w]
frame_f = test[approx[0,0,1]:approx[2,0,1], approx[0,0,0]:approx[2,0,0]]
print 'frame_f.shape: ', frame_f.shape
main = np.append(main, approx[None,:][None,:])
print 'main: ', main
# Uncomment in order to show all rectangles in image
#cv2.imshow('Show Ya', test)
#print 'Approx: ', approx.shape
#cv2.imshow('Show Ya', frame_f)
cv2.waitKey()
print '---------------------------------------------'
cv2.drawContours(im, cnts, -1,(0,255,0),2)
print main.shape
print main
cv2.imshow('contour-test', im)
cv2.waitKey()