3

我可以使用 Spark 流式传输方法成功解析放入目录的 XML 数据fileStream,并且可以将生成的 RDD 写入文本文件就可以了:

val fStream = {
  ssc.fileStream[LongWritable, Text, XmlInputFormat](
    WATCHDIR, xmlFilter _, newFilesOnly = false, conf = hadoopConf)
}


fStream.foreachRDD(rdd =>
  if (rdd.count() == 0) {
    logger.info("No files..")
  })

val dStream = fStream.map{ case(x, y) =>
  logger.info("Hello from the dStream")
  logger.info(y.toString)
  scalaxb.fromXML[Music](scala.xml.XML.loadString(y.toString))
}

dStream.foreachRDD(rdd => rdd.saveAsTextFile("file:///tmp/xmlout"))

问题是当我想将 RDD 转换为 DataFrame 以便将它们注册为临时表或saveAsParquetFile.

这段代码:

val sqlContext = new SQLContext(sc)
import sqlContext.implicits._
dStream.foreachRDD(rdd => rdd.distinct().toDF().printSchema())

导致此错误:

java.lang.UnsupportedOperationException: Schema for type scalaxb.DataRecord[scala.Any] is not supported

我会认为,因为为我的记录生成案例类,并且Spark 使用反射来推断scalaxb会很简单,我看到这就是它想要做的,除了 Spark 不支持该类型。是否有任何 Spark 或 Scalaxb 专家对如何使 Scalaxb 生成的案例类与 Spark 兼容有任何想法?scalaxb.DataRecord

顺便说一句,这里是从 scalaxb 生成的类:

package generated

case class Song(attributes: Map[String, scalaxb.DataRecord[Any]] = Map()) {
  lazy val title = attributes.get("@title") map { _.as[String] }
  lazy val length = attributes.get("@length") map { _.as[String] }
}

case class Album(song: Seq[generated.Song] = Nil,
  description: String,
  attributes: Map[String, scalaxb.DataRecord[Any]] = Map()) {
  lazy val title = attributes.get("@title") map { _.as[String] }
}

case class Artist(album: Seq[generated.Album] = Nil,
  attributes: Map[String, scalaxb.DataRecord[Any]] = Map()) {
  lazy val name = attributes.get("@name") map { _.as[String] }
}

case class Music(artist: Seq[generated.Artist] = Nil)
4

0 回答 0