10

这个数学函数的目的是使用二面角计算两个(或多个)蛋白质结构之间的距离:

在此处输入图像描述

例如,它在结构生物学中非常有用。我已经使用 numpy 在 python 中编写了这个函数,但目标是更快地实现。作为计算时间参考,我使用 scikit-learn 包中提供的欧几里德距离函数。

这是我目前拥有的代码:

import numpy as np
import numexpr as ne
from sklearn.metrics.pairwise import euclidean_distances

# We have 10000 structures with 100 dihedral angles
n = 10000
m = 100

# Generate some random data
c = np.random.rand(n,m)
# Generate random int number
x = np.random.randint(c.shape[0])

print c.shape, x

# First version with numpy of the dihedral_distances function
def dihedral_distances(a, b):
    l = 1./a.shape[0]
    return np.sqrt(l* np.sum((0.5)*(1. - np.cos(a-b)), axis=1))

# Accelerated version with numexpr
def dihedral_distances_ne(a, b):
    l = 1./a.shape[0]
    tmp = ne.evaluate('sum((0.5)*(1. - cos(a-b)), axis=1)')
    return ne.evaluate('sqrt(l* tmp)')

# The function of reference I try to be close as possible 
# in term of computation time
%timeit euclidean_distances(c[x,:], c)[0]
1000 loops, best of 3: 1.07 ms per loop

# Computation time of the first version of the dihedral_distances function
# We choose randomly 1 structure among the 10000 structures.
# And we compute the dihedral distance between this one and the others
%timeit dihedral_distances(c[x,:], c)
10 loops, best of 3: 21.5 ms per loop

# Computation time of the accelerated function with numexpr
%timeit dihedral_distances_ne(c[x,:], c)
100 loops, best of 3: 9.44 ms per loop

9.44 毫秒非常快,但如果您需要运行一百万次,它会非常慢。现在的问题是,如何做到这一点?你下一步怎么做?赛通?PyOpenCL?我对 PyOpenCL 有一些经验,但是我从来没有编写过像这个一样复杂的东西。我不知道是否可以像使用 numpy 一样在 GPU 上一步计算二面角距离以及如何进行。

感谢你们对我的帮助!

编辑:谢谢你们!我目前正在研究完整的解决方案,一旦完成,我会将代码放在这里。

赛通版本:

%load_ext cython
import numpy as np

np.random.seed(1234)

n = 10000
m = 100

c = np.random.rand(n,m)
x = np.random.randint(c.shape[0])

print c.shape, x

%%cython --compile-args=-fopenmp --link-args=-fopenmp --force

import numpy as np
cimport numpy as np
from libc.math cimport sqrt, cos
cimport cython
from cython.parallel cimport parallel, prange

# Define a function pointer to a metric
ctypedef double (*metric)(double[: ,::1], np.intp_t, np.intp_t)

cdef extern from "math.h" nogil:
    double cos(double x)
    double sqrt(double x)

@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
cdef double dihedral_distances(double[:, ::1] a, np.intp_t i1, np.intp_t i2):
    cdef double res
    cdef int m
    cdef int j

    res = 0.
    m = a.shape[1]

    for j in range(m):
        res += 1. - cos(a[i1, j] - a[i2, j])

    res /= 2.*m

    return sqrt(res)

@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
cdef double dihedral_distances_p(double[:, ::1] a, np.intp_t i1, np.intp_t i2):
    cdef double res
    cdef int m
    cdef int j

    res = 0.
    m = a.shape[1]

    with nogil, parallel(num_threads=2):
        for j in prange(m, schedule='dynamic'):
            res += 1. - cos(a[i1, j] - a[i2, j])

    res /= 2.*m

    return sqrt(res)

@cython.boundscheck(False)
@cython.wraparound(False)
def pairwise(double[: ,::1] c not None, np.intp_t x, p = True):
    cdef metric dist_func
    if p:
        dist_func = &dihedral_distances_p
    else:
        dist_func = &dihedral_distances

    cdef np.intp_t i, n_structures
    n_samples = c.shape[0]

    cdef double[::1] res = np.empty(n_samples)

    for i in range(n_samples):
        res[i] = dist_func(c, x, i)

    return res

%timeit pairwise(c, x, False)
100 loops, best of 3: 17 ms per loop    

# Parallel version
%timeit pairwise(c, x, True)
10 loops, best of 3: 37.1 ms per loop

因此,我按照您的链接创建二面角距离函数的 cython 版本。我们获得了一些速度,但不是很多,但它仍然比 numexpr 版本慢(17ms vs 9.44ms)。所以我尝试使用 prange 并行化函数,结果更糟(37.1ms vs 17ms vs 9.4ms)!

我错过了什么吗?

4

2 回答 2

3

如果您愿意使用http://pythran.readthedocs.io/,则可以利用 numpy 实现并在这种情况下获得比 cython 更好的性能:

#pythran export np_cos_norm(float[], float[])
import numpy as np
def np_cos_norm(a, b):
    val = np.sum(1. - np.cos(a-b))
    return np.sqrt(val / 2. / a.shape[0])

并编译它:

pythran fast.py

在 cython 版本上获得平均 x2。

如果使用:

pythran fast.py -march=native -DUSE_BOOST_SIMD -fopenmp

您将获得一个运行速度稍快的矢量化并行版本:

100000 loops, best of 3: 2.54 µs per loop
1000000 loops, best of 3: 674 ns per loop

100000 loops, best of 3: 16.9 µs per loop
100000 loops, best of 3: 4.31 µs per loop

10000 loops, best of 3: 176 µs per loop
10000 loops, best of 3: 42.9 µs per loop

(使用与 ev-br 相同的测试平台)

于 2015-08-28T13:42:09.193 回答
2

这是对 cython 的快速而肮脏的尝试,仅适用于一对一维数组:

(在 IPython 笔记本中)

%%cython

cimport cython
cimport numpy as np

cdef extern from "math.h":
    double cos(double x) nogil
    double sqrt(double x) nogil

def cos_norm(a, b):
    return cos_norm_impl(a, b)

@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
cdef double cos_norm_impl(double[::1] a, double[::1] b) nogil:
    cdef double res = 0., val
    cdef int m = a.shape[0]
    # XXX: shape of b not checked
    cdef int j

    for j in range(m):
        val = a[j] - b[j]
        res += 1. - cos(val)
    res /= 2.*m

    return sqrt(res)

与简单的 numpy 实现相比,

def np_cos_norm(a, b):
    val = np.add.reduce(1. - np.cos(a-b))
    return np.sqrt(val / 2. / a.shape[0])

我明白了

np.random.seed(1234)

for n in [100, 1000, 10000]:
    x = np.random.random(n)
    y = np.random.random(n)
    %timeit cos_norm(x, y)
    %timeit np_cos_norm(x, y)
    print '\n'

100000 loops, best of 3: 3.04 µs per loop
100000 loops, best of 3: 12.4 µs per loop

100000 loops, best of 3: 18.8 µs per loop
10000 loops, best of 3: 30.8 µs per loop

1000 loops, best of 3: 196 µs per loop
1000 loops, best of 3: 223 µs per loop

因此,根据向量的维数,您可以获得 4 到 0 的加速。

对于计算成对距离,您可能会做得更好,如本博文所示,但当然是 YMMV。

于 2015-08-27T22:08:36.033 回答