8

我目前正在对几项临床试验的生存数据进行荟萃分析。

为此,我使用相同方法从已发布的分析中获取代码。但是,当使用已发布分析中的数据运行此代码时,我无法复制他们的结果。事实上,结果无法收敛到任何合理的估计。

代码本身(不包括数据)应该是正确的,因为它直接来自作者。我认为问题必须与如何运行采样的初始值或参数有关,但是在播放了许多初始值之后,老化的长度,变薄等......我没有得到有意义的结果。

对于如何运行它(初始值等)以使其正常运行的任何建议,我将不胜感激。或者,如果代码中存在问题,或者数据的设置方式与代码不匹配,那么了解这将很有用。

作为旁注,我正在使用 R2WinBUGs 进行分析,尽管我单独使用 WinBUGs 时遇到了同样的问题。

该方法的一些额外背景:

其工作方式是通过使用随机效应估计多个研究的处理之间重新参数化的 Weibull 分布的形状和尺度参数的差异。

Weibull 分布被重新参数化,使得危险率的对数为 a+b*log(t),其中 a 是尺度参数,b 是形状参数。由此,您可以计算给定数量的患者在一个时间间隔内给定数量的失败的似然函数。

不幸的是,这篇文章是公开的,但如果你可以访问这里是链接: http ://onlinelibrary.wiley.com/doi/10.1002/jrsm.25/abstract;jsessionid=2BA8F0D9BEF9A33F84975618D33F8DD9.f03t03?userIsAuthenticated=false&deniedAccessCustomisedMessage=

输入模型的变量的快速摘要:

NT:包括的单独治疗的数量。

N:主数据集中的行数。NS:研究数量

s:数据行对应的研究(编号为1:6)

r:此治疗/研究间隔失败的患者人数

n:此治疗/研究间隔开始时有风险的患者人数

t:这行数据对应的处理(编号为 1:3)

b:指示哪个处理是与其他处理进行比较的基线(每行设置为 1)。

bs:作为本研究控制组的治疗

bt:治疗是本研究的研究部门

WinBUGS 代码(包括数据):

#Winbugs code for random effects networks meta-analysis model
Model
{
  for (i in 1:N)
  { # N=number of data points in dataset
    #likelihood
    r[i]~ dbin(p[i],n[i])
    p[i]<-1-exp(-h[i]*dt[i]) # hazard h over interval [t,t+dt] # expressed as deaths per unit person-time (e.g. months)
    #random effects model
    log(h[i])<-nu[i]+log(time[i])*theta[i]
    nu[i]<-mu[s[i],1]+delta[s[i],1]*(1-equals(t[i],b[i]))
    theta[i]<-mu[s[i],2]+ delta[s[i],2]*(1-equals(t[i],b[i]))
  }
  for(k in 1 :NS)
  { # NS=number of studies in dataset
    delta[k,1:2]~dmnorm(md[k,1:2],omega[1:2,1:2])
    md[k,1]<-d[ts[k],1]-d[bs[k],1]
    md[k,2]<-d[ts[k],2]-d[bs[k],2]
  }
  # priors
  d[1,1]<-0
  d[1,2]<-0
  for(j in 2 :NT)
  { # NT=number of treatments
    d[j,1:2] ~ dmnorm(mean[1:2],prec2[,])
  }
  for(k in 1 :NS)
  {
    mu[k,1:2] ~ dmnorm(mean[1:2],prec2[,])
  }
  omega[1:2, 1:2] ~ dwish(R[1:2,1:2],2)
}
# Winbugs data set
list(N=242, NS=6, NT=3,
mean=c(0,0),
prec2 = structure(.Data = c(
0.0001,0,
0,0.0001), .Dim = c(2,2)),
R = structure(.Data = c(
0.01,0,
0,0.01), .Dim = c(2,2))
)

s[] r[] n[] t[] b[] time[] dt[]
1 15 152 3 1 3 3
1 11 140 3 1 6 3
1 8 129 3 1 9 3
1 9 121 3 1 12 3
1 9 112 3 1 15 3
1 3 83 3 1 18 3
1 4 80 3 1 21 3
1 5 76 3 1 24 3
1 2 71 3 1 27 3
1 2 41 3 1 30 3
1 1 39 3 1 33 3
1 3 38 3 1 36 3
1 2 35 3 1 39 3
1 1 33 3 1 42 3
1 3 32 3 1 45 3
1 3 29 3 1 48 3
1 2 26 3 1 51 3
1 1 24 3 1 54 3
1 1 23 3 1 57 3
1 1 22 3 1 60 3
1 10 149 1 1 3 3
1 11 140 1 1 6 3
1 9 128 1 1 9 3
1 5 119 1 1 12 3
1 6 114 1 1 15 3
1 3 72 1 1 18 3
1 5 70 1 1 21 3
1 4 65 1 1 24 3
1 7 61 1 1 27 3
1 2 34 1 1 30 3
1 2 32 1 1 33 3
1 3 30 1 1 36 3
1 2 27 1 1 39 3
1 2 25 1 1 42 3
1 1 23 1 1 45 3
1 2 22 1 1 48 3
1 1 19 1 1 51 3
1 2 19 1 1 54 3
1 1 17 1 1 57 3
1 0 16 1 1 60 3
2 4 125 2 1 3 3
2 4 121 2 1 6 3
2 2 117 2 1 9 3
2 5 114 2 1 12 3
2 2 109 2 1 15 3
2 3 107 2 1 18 3
2 2 104 2 1 21 3
2 4 94 2 1 24 3
2 4 90 2 1 27 3
2 3 81 2 1 30 3
2 4 78 2 1 33 3
2 3 61 2 1 36 3
2 5 58 2 1 39 3
2 1 48 2 1 42 3
2 2 47 2 1 45 3
2 3 41 2 1 48 3
2 0 38 2 1 51 3
2 3 29 2 1 54 3
2 3 26 2 1 57 3
2 2 18 2 1 60 3
2 0 16 2 1 63 3
2 1 10 2 1 66 3
2 0 9 2 1 69 3
2 0 3 2 1 72 3
2 0 3 2 1 75 3
2 0 3 2 1 78 3
2 15 196 1 1 3 3
2 9 179 1 1 6 3
2 10 170 1 1 9 3
2 9 162 1 1 12 3
2 9 153 1 1 15 3
2 5 141 1 1 18 3
2 5 136 1 1 21 3
2 10 121 1 1 24 3
2 5 111 1 1 27 3
2 7 92 1 1 30 3
2 7 85 1 1 33 3
2 4 71 1 1 36 3
2 6 67 1 1 39 3
2 4 53 1 1 42 3
2 5 49 1 1 45 3
2 6 36 1 1 48 3
2 3 30 1 1 51 3
2 2 26 1 1 54 3
2 2 24 1 1 57 3
2 0 13 1 1 60 3
2 1 13 1 1 63 3
2 1 11 1 1 66 3
2 1 10 1 1 69 3
2 0 6 1 1 72 3
2 0 6 1 1 75 3
2 0 6 1 1 78 3
3 6 113 2 1 3 3
3 4 105 2 1 6 3
3 3 101 2 1 9 3
3 1 97 2 1 12 3
3 9 96 2 1 15 3
3 4 84 2 1 18 3
3 2 80 2 1 21 3
3 4 74 2 1 24 3
3 3 70 2 1 27 3
3 2 59 2 1 30 3
3 0 57 2 1 33 3
3 6 51 2 1 36 3
3 2 45 2 1 39 3
3 1 37 2 1 42 3
3 3 36 2 1 45 3
3 1 27 2 1 48 3
3 1 26 2 1 51 3
3 2 25 2 1 54 3
3 7 116 1 1 3 3
3 6 111 1 1 6 3
3 4 105 1 1 9 3
3 3 99 1 1 12 3
3 9 96 1 1 15 3
3 5 85 1 1 18 3
3 5 80 1 1 21 3
3 3 68 1 1 24 3
3 7 65 1 1 27 3
3 8 48 1 1 30 3
3 4 40 1 1 33 3
3 2 33 1 1 36 3
3 0 31 1 1 39 3
3 1 28 1 1 42 3
3 2 27 1 1 45 3
3 3 20 1 1 48 3
3 1 17 1 1 51 3
3 0 16 1 1 54 3
4 10 167 2 1 3 3
4 5 149 2 1 6 3
4 6 145 2 1 9 3
4 3 138 2 1 12 3
4 4 135 2 1 15 3
4 5 128 2 1 18 3
4 2 122 2 1 21 3
4 2 120 2 1 24 3
4 7 104 2 1 27 3
4 9 98 2 1 30 3
4 5 89 2 1 33 3
4 2 57 2 1 36 3
4 2 55 2 1 39 3
4 4 53 2 1 42 3
4 2 49 2 1 45 3
4 2 26 2 1 48 3
4 1 24 2 1 51 3
4 1 23 2 1 54 3
4 1 11 2 1 57 3
4 0 10 2 1 60 3
4 0 10 2 1 63 3
4 2 164 1 1 3 3
4 5 153 1 1 6 3
4 7 148 1 1 9 3
4 6 141 1 1 12 3
4 12 135 1 1 15 3
4 6 119 1 1 18 3
4 4 113 1 1 21 3
4 3 109 1 1 24 3
4 5 98 1 1 27 3
4 2 94 1 1 30 3
4 2 92 1 1 33 3
4 4 55 1 1 36 3
4 3 50 1 1 39 3
4 1 48 1 1 42 3
4 2 47 1 1 45 3
4 1 22 1 1 48 3
4 1 21 1 1 51 3
4 0 20 1 1 54 3
4 1 7 1 1 57 3
4 0 6 1 1 60 3
4 0 6 1 1 63 3
5 12 152 2 1 3 3
5 7 135 2 1 6 3
5 9 128 2 1 9 3
5 8 120 2 1 12 3
5 7 112 2 1 15 3
5 1 77 2 1 18 3
5 3 76 2 1 21 3
5 2 73 2 1 24 3
5 4 71 2 1 27 3
5 5 45 2 1 30 3
5 3 40 2 1 33 3
5 2 37 2 1 36 3
5 3 35 2 1 39 3
5 3 32 2 1 42 3
5 3 32 2 1 45 3
5 1 32 2 1 48 3
5 9 149 1 1 3 3
5 4 131 1 1 6 3
5 5 127 1 1 9 3
5 8 122 1 1 12 3
5 11 114 1 1 15 3
5 5 76 1 1 18 3
5 5 71 1 1 21 3
5 5 66 1 1 24 3
5 6 61 1 1 27 3
5 3 35 1 1 30 3
5 4 32 1 1 33 3
5 1 28 1 1 36 3
5 1 27 1 1 39 3
5 6 26 1 1 42 3
5 5 26 1 1 45 3
5 0 26 1 1 48 3
6 22 179 2 1 3 3
6 13 151 2 1 6 3
6 3 138 2 1 9 3
6 5 135 2 1 12 3
6 1 130 2 1 15 3
6 5 104 2 1 18 3
6 7 99 2 1 21 3
6 6 92 2 1 24 3
6 6 66 2 1 27 3
6 7 60 2 1 30 3
6 4 53 2 1 33 3
6 0 30 2 1 36 3
6 2 29 2 1 39 3
6 3 27 2 1 42 3
6 1 24 2 1 45 3
6 0 16 2 1 48 3
6 1 15 2 1 51 3
6 0 14 2 1 54 3
6 1 14 2 1 57 3
6 0 14 2 1 60 3
6 13 178 1 1 3 3
6 7 160 1 1 6 3
6 7 153 1 1 9 3
6 10 146 1 1 12 3
6 10 136 1 1 15 3
6 2 97 1 1 18 3
6 5 95 1 1 21 3
6 3 90 1 1 24 3
6 5 57 1 1 27 3
6 2 52 1 1 30 3
6 6 50 1 1 33 3
6 3 37 1 1 36 3
6 1 34 1 1 39 3
6 2 33 1 1 42 3
6 4 31 1 1 45 3
6 0 17 1 1 48 3
6 0 17 1 1 51 3
6 1 17 1 1 54 3
6 0 16 1 1 57 3
6 0 16 1 1 60 3
END


ts[] bs[]
3 1
2 1
2 1
2 1
2 1
2 1
END
4

2 回答 2

2

最终,我无法让模型在 WinBUGS 中正常运行。但是,我能够将模型移植到 STAN 并获得非常接近的匹配。有关 STAN 代码,请参见下文:

data { 


 int<lower=1> N;
  int<lower=1> NS;
  int<lower=1> NT;

  cov_matrix[2] prec2;
  matrix[2,2] R;
  vector[2] means;

  int<lower=0> bs[NS];
  int<lower=0> ts[NS];

  int<lower=0> s[N];
  int<lower=0> t[N];
  int<lower=0> n[N];
  int<lower=0> r[N];
  real<lower=0> dt[N];
  real<lower=0> time[N];
}
parameters {
  vector[2] mu[NS];
  vector[2] delta[NS];
  vector[2] dj[NT-1];
  cov_matrix[2] omega;
} 
transformed parameters{
  real<lower=0,upper=1> p[N];
  real<lower=0> h[N];
  real nu[N];
  real theta[N];
  vector[2] md[NS];
  vector[2] d[NT];

  d[1][1] <- 0;
  d[1][2] <- 0;
  for(j in 2:NT){
    d[j] <- dj[j-1];
  }
  for(k in 1:NS){
    md[k] <- d[ts[k]] - d[bs[k]];
  }
  for(i in 1:N){
    if(t[i] == 1){
      nu[i] <- mu[s[i]][1];
      theta[i] <- mu[s[i]][2];
    }else{
      nu[i] <- mu[s[i]][1] + delta[s[i]][1];
      theta[i] <- mu[s[i]][2] + delta[s[i]][2];
    }
    h[i] <- exp(nu[i] + log(time[i]) * theta[i]);
    p[i] <- 1 - exp(- h[i] * dt[i]);
  }
}
model {
  omega ~ inv_wishart(2,R);
  for(j in 1:(NT-1)){
    dj[j] ~ multi_normal(means,prec2);
  }
  for(k in 1:NS){
    delta[k] ~ multi_normal(md[k],omega);
    mu[k] ~ multi_normal(means,prec2);
  }
  for(i in 1:N){
    r[i] ~ binomial(n[i],p[i]);
  }
}
generated quantities{
  vector[N] log_lik;
  for (l in 1:N) {
    log_lik[l] <- binomial_log(r[l], n[l], p[l]);
  }
}

请注意,由于 STAN/BUGS 之间的差异,对精度/方差的混淆可能会混淆输入数据的内容。对于 R 和 prec2,我加载了:

dataList$R <- matrix(c(0.01,0,0,0.01),nrow=2,ncol=2,byrow=TRUE)
dataList$prec2 <- matrix(c(10^4,0,0,10^4),nrow=2,ncol=2,byrow=TRUE)
于 2015-08-26T13:58:59.737 回答
1

给你一些建议,希望对你有帮助:

  1. 我认为您的问题可以在https://stats.stackexchange.com/中得到更好的回答;虽然如果你想把问题移到那里,你应该重写它而不是发布代码转储。

  2. WinBUGS已经好几年了,距离上次更新已经 8 年了!我认为你应该忘记它,因为有几个更好的选择。

  3. 您可以在JagsStan中尝试几乎相同的代码,其中两者都可以通过rJagsRStan在 R 中使用。Stan 特别重要,因为它使用了 HCMC,它在 WinBUGS 不具备的许多情况下收敛。

  4. 我认为您应该阅读John K. Kruschke《Doing Bayesian Data Analysis 2e》这本简单的书,以便能够自己理解和进行贝叶斯数据分析。

于 2015-08-24T19:57:36.113 回答