5 是您的标准生成的第一个数字。让我们看一下最多生成 25 个的数字:
5、6, 7 ,8,9,10, 11 ,12, 13 ,14,15,16, 17 ,18, 19 ,20,21,22, 23 ,24, 25
现在,让我们看看这些相同的数字,当我们使用埃拉托色尼筛算法时:
5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25
删除2后:
5、6, 7 ,8, 9 ,10, 11 ,12, 13 ,14, 15 ,16, 17 ,18, 19 ,20, 21 ,22, 23 ,24, 25
删除 3 后:
5、6, 7 ,8,9,10, 11 ,12, 13 ,14,15,16, 17 ,18, 19 ,20,21,22, 23 ,24, 25
这和第一组一样!请注意,它们都包括 25,它不是素数。如果我们想一想,这是一个明显的结果。考虑任何 6 个连续数字的组:
6k - 3、6k - 2、6k - 1、6k、6k + 1、6k + 2
如果我们考虑一点,我们得到:
3*(2k - 1), 2*(3k - 1), 6k - 1, 6*(k), 6k + 1, 2*(3k + 1)
在任何 6 个连续数字的组中,其中三个可以被 2 整除,其中两个可以被 3 整除。这些正是我们迄今为止删除的数字!所以:
您的算法仅使用6k - 1
并且6k + 1
与前两轮 Erathothenes 筛法完全相同。
与 Sieve 相比,这也是一个相当不错的速度改进,因为我们不必添加所有这些额外的元素来删除它们。这解释了为什么您的算法有效以及为什么它不会遗漏任何情况;因为它和筛子完全一样。
无论如何,我同意一旦你生成了素数,你的boolean
方式是迄今为止最快的。ArrayList
我已经使用你的方式、你的boolean[]
方式和我自己的方式使用LinkedList
and设置了一个基准测试iterator.remove()
(因为在LinkedList
.向上,我打印列表的大小并更改大小n
以尝试防止过多的分支预测优化。您还可以通过+= 6
在初始种子中使用所有三种方法来获得更快的速度,而不是prod6k
:
import java.util.*;
public class PrimeGenerator {
public static List<Integer> generatePrimesArrayList(int n) {
List<Integer> primes = new ArrayList<>(getApproximateSize(n));
primes.add(2);// explicitly add
primes.add(3);// 2 and 3
for (int i = 6; i <= n; i+=6) {
// get all the numbers which can be generated by the formula
primes.add(i - 1);
primes.add(i + 1);
}
for (int i = 0; i < primes.size(); i++) {
int k = primes.get(i);
// remove all the factors of the numbers generated by the formula
for (int j = k * k; j <= n; j += k)// changed to k * k from 2 * k, Thanks
// to DTing
{
int index = primes.indexOf(j);
if (index != -1)
primes.remove(index);
}
}
return primes;
}
public static List<Integer> generatePrimesBoolean(int n) {
boolean[] primes = new boolean[n + 5];
for (int i = 0; i <= n; i++)
primes[i] = false;
primes[2] = primes[3] = true;
for (int i = 6; i <= n; i+=6) {
primes[i + 1] = true;
primes[i - 1] = true;
}
for (int i = 0; i <= n; i++) {
if (primes[i]) {
int k = i;
for (int j = k * k; j <= n && j > 0; j += k) {
primes[j] = false;
}
}
}
int approximateSize = getApproximateSize(n);
List<Integer> primesList = new ArrayList<>(approximateSize);
for (int i = 0; i <= n; i++)
if (primes[i])
primesList.add(i);
return primesList;
}
private static int getApproximateSize(int n) {
// Prime Number Theorem. Round up
int approximateSize = (int) Math.ceil(((double) n) / (Math.log(n)));
return approximateSize;
}
public static List<Integer> generatePrimesLinkedList(int n) {
List<Integer> primes = new LinkedList<>();
primes.add(2);// explicitly add
primes.add(3);// 2 and 3
for (int i = 6; i <= n; i+=6) {
// get all the numbers which can be generated by the formula
primes.add(i - 1);
primes.add(i + 1);
}
for (int i = 0; i < primes.size(); i++) {
int k = primes.get(i);
for (Iterator<Integer> iterator = primes.iterator(); iterator.hasNext();) {
int primeCandidate = iterator.next();
if (primeCandidate == k)
continue; // Always skip yourself
if (primeCandidate == (primeCandidate / k) * k)
iterator.remove();
}
}
return primes;
}
public static void main(String... args) {
int initial = 4000;
for (int i = 0; i < 12; i++) {
int n = initial * i;
long start = System.currentTimeMillis();
List<Integer> result = generatePrimesArrayList(n);
long seconds = System.currentTimeMillis() - start;
System.out.println(result.size() + "\tArrayList Seconds: " + seconds);
start = System.currentTimeMillis();
result = generatePrimesBoolean(n);
seconds = System.currentTimeMillis() - start;
System.out.println(result.size() + "\tBoolean Seconds: " + seconds);
start = System.currentTimeMillis();
result = generatePrimesLinkedList(n);
seconds = System.currentTimeMillis() - start;
System.out.println(result.size() + "\tLinkedList Seconds: " + seconds);
}
}
}
以及最后几次试验的结果:
3432 ArrayList Seconds: 430
3432 Boolean Seconds: 0
3432 LinkedList Seconds: 90
3825 ArrayList Seconds: 538
3824 Boolean Seconds: 0
3824 LinkedList Seconds: 81
4203 ArrayList Seconds: 681
4203 Boolean Seconds: 0
4203 LinkedList Seconds: 100
4579 ArrayList Seconds: 840
4579 Boolean Seconds: 0
4579 LinkedList Seconds: 111