我正在寻找一种快速方法来获取 Python 中的 t 检验置信区间,以了解均值之间的差异。与 R 中的类似:
X1 <- rnorm(n = 10, mean = 50, sd = 10)
X2 <- rnorm(n = 200, mean = 35, sd = 14)
# the scenario is similar to my data
t_res <- t.test(X1, X2, alternative = 'two.sided', var.equal = FALSE)
t_res
出去:
Welch Two Sample t-test
data: X1 and X2
t = 1.6585, df = 10.036, p-value = 0.1281
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-2.539749 17.355816
sample estimates:
mean of x mean of y
43.20514 35.79711
下一个:
>> print(c(t_res$conf.int[1], t_res$conf.int[2]))
[1] -2.539749 17.355816
考虑到假设检验中显着性区间的重要性(以及最近只报告 p 值的做法受到了多少批评),我在 statsmodels 或 scipy 中都没有发现任何类似的东西,这很奇怪。