3

我想测试矩阵在 R 中是否为正定矩阵。我使用了 R 函数is.positive.definite,但尽管我的矩阵如函数所示是对称的,但仍然收到以下错误消息isSymmetric。请问这是因为舍入错误吗?

Error in is.positive.definite(S) : argument x is not a symmetric matrix

我的工作代码附在下面。请问有人可以帮我吗?谢谢。

library(Matrix) # isSymmetric
library(matrixcalc) # is.positive.definite
library(expm) # sqrtm

###################################################################################################

theta0 <- c(0.2, 10)

###################################################################################################

OS.mean <- function(shape, rank, n=10){
  term1 <- factorial(n)/(factorial(rank-1)*factorial(n-rank))
  term2 <- beta(n-rank+1, rank) - beta(n-rank+shape+1, rank)
  term1*term2/shape
}

OS.mean.theta0.10 <- as.matrix(OS.mean(theta0[1], rank=seq(1, 10, by=1)))

###################################################################################################

OSsq.mean <- function(shape, rank, n=10){
  term1 <- factorial(n)/(factorial(rank-1)*factorial(n-rank))
  term2 <- beta(n-rank+1, rank) - 2*beta(n-rank+shape+1, rank) + beta(n-rank+2*shape+1, rank)
  term1*term2/(shape*shape)
}

OSsq.mean.theta0.10 <- as.matrix(OSsq.mean(theta0[1], rank=seq(1, 10, by=1)))

###################################################################################################

OSprod.mean <- function(shape, rank1, rank2, n=10){
  term1 <- factorial(n)/(factorial(rank1-1)*factorial(rank2-rank1-1)*factorial(n-rank2))
  term2 <- beta(n-rank1+1, rank1) - beta(n-rank1+shape+1, rank1)
  term3 <- beta(n-rank2+1, rank2-rank1)
  term4 <- beta(n-rank1+shape+1, rank1) - beta(n-rank1+2*shape+1, rank1)
  term5 <- beta(n-rank2+shape+1, rank2-rank1)
  term1*(term2*term3-term4*term5)/(shape*shape)
}

OS.cov <- function(shape, rank1, rank2){
  OSprod.mean(shape, rank1, rank2) - OS.mean(shape, rank1)*OS.mean(shape, rank2)  
}

###################################################################################################

spacing <- seq(1, 10, by=1)

OS.varcov.10 <- function(shape, n=10){
  V.diag <- diag(c(OSsq.mean.theta0.10 - OS.mean.theta0.10^2))

  V.upper <- matrix(0, nrow=10, ncol=10)
  for(i in 1:9){
    for(j in (i+1):10){
      V.upper[i, j] <- OS.cov(shape, spacing[i], spacing[j])
    }
  }

  V.upper + V.diag + t(V.upper)
}

###################################################################################################

V.theta0.10 <- OS.varcov.10(theta0[1])

kappa(V.theta0.10)

isSymmetric(V.theta0.10)
is.positive.definite(V.theta0.10)

S <- sqrtm(V.theta0.10)
isSymmetric(S)
is.positive.definite(S)
4

1 回答 1

7

由于失去显着性,您的S矩阵不是对称的,但默认的输出小数位数将其隐藏。你自己看:

> options(digits=20)
> S[1,2]
[1] 0.033457660484940172
> S[2,1]
[1] 0.033457660484940213

问题是,is.symmetric.matrixfrom matrixcalcpackage 并没有考虑到小的差异(即它只是将矩阵元素与严格==而不是all.equal方法进行比较),而isSymmetricfrom Matrixpackage 则可以。如果你对矩阵进行四舍五入,一切都会好起来的:

> S=round(S,10)
> is.symmetric.matrix(S)
[1] TRUE
> is.positive.definite(S)
[1] TRUE
于 2015-07-27T05:38:48.463 回答