我想我可能在我的一个涉及劳厄衍射模式(材料科学)的研究项目中解决了与您类似的问题。在给定每个峰的中心坐标的情况下,我的任务是在衍射图中找到每个峰的长度、宽度和倾斜角度。我的解决方案是在峰值和阈值、过滤器等周围选择一个感兴趣的区域,这样子图像中只有一个峰值。然后我构建了一个函数来将这些参数拟合到生成的椭圆中:
from xml.etree.cElementTree import parse
import numpy as np
from os import listdir, getcwd
from scipy import ndimage
import h5py
import multiprocessing
import time
#from dicttoxml import dicttoxml
#from xml.dom.minidom import parseString
import sys
import cPickle as pickle
from threading import Thread
from skimage.measure import moments
def fitEllipse(data):
'''
Returns the length of the long and short axis and the angle measure
of the long axis to the horizontal of the best fit ellipsebased on
image moments.
usage: longAxis, shortAxis, angle = fitEllipse(N_by_M_image_as_array)
'''
# source:
# Kieran F. Mulchrone, Kingshuk Roy Choudhury,
# Fitting an ellipse to an arbitrary shape:
# implications for strain analysis, Journal of
# Structural Geology, Volume 26, Issue 1,
# January 2004, Pages 143-153, ISSN 0191-8141,
# <http://dx.doi.org/10.1016/S0191-8141(03)00093-2.>
# Lourena Rocha, Luiz Velho, Paulo Cezar P. Carvalho
# Image Moments-Based Structuring and Tracking of
# Objects, IMPA-Instituto Nacional de Matematica Pura
# e Aplicada. Estrada Dona Castorina, 110, 22460
# Rio de Janeiro, RJ, Brasil,
# <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1167130>
m = moments(data, 2) # super fast compated to anything in pure python
xc = m[1,0] / m[0,0]
yc = m[0,1] / m[0,0]
a = (m[2,0] / m[0,0]) - (xc**2)
b = 2 * ((m[1,1] / m[0,0]) - (xc * yc))
c = (m[0,2] / m[0,0]) - (yc**2)
theta = .5 * (np.arctan2(b, (a - c)))
w = np.sqrt(6 * (a + c - np.sqrt(b**2 + (a-c)**2)))
l = np.sqrt(6 * (a + c + np.sqrt(b**2 + (a-c)**2)))
return l, w, theta
我只是把它放在一起,以防它与你正在寻找的相似。如果您需要更多解释,请随时发表评论。我使用的来源(数学)在评论中。