假设您将字典存储在 a 中set()
,因此查找平均为O(1)(最坏情况为O(n))。
您可以从一个单词生成汉明距离为 1 的所有有效单词:
>>> def neighbours(word):
... for j in range(len(word)):
... for d in string.ascii_lowercase:
... word1 = ''.join(d if i==j else c for i,c in enumerate(word))
... if word1 != word and word1 in words: yield word1
...
>>> {word: list(neighbours(word)) for word in words}
{'bot': ['lot'], 'lol': ['lot'], 'lot': ['bot', 'lol']}
如果M是单词的长度,L是字母表的长度(即 26),则使用这种方法查找相邻单词的最坏情况时间复杂度是O(L*M*N)。
“简单方法”方法的时间复杂度为O(N^2)。
这种方法什么时候更好?When L*M < N
,即如果只考虑小写字母,when M < N/26
。(我在这里只考虑最坏的情况)
注意:一个英文单词的平均长度是 5.1 个字母。因此,如果您的字典大小大于 132 个单词,您应该考虑这种方法。
可能有可能获得比这更好的性能。然而,这真的很容易实现。
实验基准:
“简单方法”算法(A1):
from itertools import zip_longest
def hammingdist(w1,w2): return sum(1 if c1!=c2 else 0 for c1,c2 in zip_longest(w1,w2))
def graph1(words): return {word: [n for n in words if hammingdist(word,n) == 1] for word in words}
该算法(A2):
def graph2(words): return {word: list(neighbours(word)) for word in words}
基准代码:
for dict_size in range(100,6000,100):
words = set([''.join(random.choice(string.ascii_lowercase) for x in range(3)) for _ in range(dict_size)])
t1 = Timer(lambda: graph1()).timeit(10)
t2 = Timer(lambda: graph2()).timeit(10)
print('%d,%f,%f' % (dict_size,t1,t2))
输出:
100,0.119276,0.136940
200,0.459325,0.233766
300,0.958735,0.325848
400,1.706914,0.446965
500,2.744136,0.545569
600,3.748029,0.682245
700,5.443656,0.773449
800,6.773326,0.874296
900,8.535195,0.996929
1000,10.445875,1.126241
1100,12.510936,1.179570
...

我用较小的 N 步长运行了另一个基准测试,以便更接近它:
10,0.002243,0.026343
20,0.010982,0.070572
30,0.023949,0.073169
40,0.035697,0.090908
50,0.057658,0.114725
60,0.079863,0.135462
70,0.107428,0.159410
80,0.142211,0.176512
90,0.182526,0.210243
100,0.217721,0.218544
110,0.268710,0.256711
120,0.334201,0.268040
130,0.383052,0.291999
140,0.427078,0.312975
150,0.501833,0.338531
160,0.637434,0.355136
170,0.635296,0.369626
180,0.698631,0.400146
190,0.904568,0.444710
200,1.024610,0.486549
210,1.008412,0.459280
220,1.056356,0.501408
...

您会看到权衡非常低(长度为 3 的单词字典为 100)。对于小型词典,O(N^2) 算法的性能稍好一些,但随着 N 的增长,O(LMN) 算法很容易被击败。
对于具有较长单词的字典,O(LMN) 算法在 N 中保持线性,它只是具有不同的斜率,因此权衡稍微向右移动(长度 = 5 时为 130)。