5

Say I have a list of counties with varying amounts of spelling errors or other issues that differentiate them from the 2010 FIPS dataset (code to create fips dataframe below), but the states in which the misspelled counties reside are entered correctly. Here's a sample of 21 random observations from my full dataset:

tomatch <- structure(list(county = c("Beauregard", "De Soto", "Dekalb", "Webster",
                                     "Saint Joseph", "West Feliciana", "Ketchikan Gateway", "Evangeline", 
                                     "Richmond City", "Saint Mary", "Saint Louis City", "Mclean", 
                                     "Union", "Bienville", "Covington City", "Martinsville City", 
                                     "Claiborne", "King And Queen", "Mclean", "Mcminn", "Prince Georges"
), state = c("LA", "LA", "GA", "LA", "IN", "LA", "AK", "LA", "VA", 
             "LA", "MO", "KY", "LA", "LA", "VA", "VA", "LA", "VA", "ND", "TN", 
             "MD")), .Names = c("county", "state"), class = c("tbl_df", "data.frame"
             ), row.names = c(NA, -21L))

              county state
1         Beauregard    LA
2            De Soto    LA
3             Dekalb    GA
4            Webster    LA
5       Saint Joseph    IN
6     West Feliciana    LA
7  Ketchikan Gateway    AK
8         Evangeline    LA
9      Richmond City    VA
10        Saint Mary    LA
11  Saint Louis City    MO
12            Mclean    KY
13             Union    LA
14         Bienville    LA
15    Covington City    VA
16 Martinsville City    VA
17         Claiborne    LA
18    King And Queen    VA
19            Mclean    ND
20            Mcminn    TN
21    Prince Georges    MD

I've used adist to create a fuzzy string matching algorithm that matches around 80% of my counties to the county names in fips. However, sometimes it will match two counties with similar spelling, but from different states (e.g., "Webster, LA" gets matched to "Webster, GA" rather than "Webster Parrish, LA").

distance <- adist(tomatch$county, 
                  fips$countyname, 
                  partial = TRUE)


min.name <- apply(distance, 1, min)

matchedcounties <- NULL  

for(i in 1:nrow(distance)) {

  s2.i <- match(min.name[i], distance[i, ])
  s1.i <- i

  matchedcounties <- rbind(data.frame(s2.i = s2.i,
                                      s1.i = s1.i,
                                      s1name = tomatch[s1.i, ]$county, 
                                      s2name = fips[s2.i, ]$countyname, 
                                      adist = min.name[i]),
                           matchedcounties)

}

Therefore, I want to restrict fuzzy string matching of county to the correctly spelled versions with matching state.

My current algorithm makes one big matrix which calculates standard Levenshtein distances between both sources and then selects the value with the minimum distance.

To solve my problem, I'm guessing I'd need to create a function that could be applied to each 'state' group by ddply, but I'm confused as to how I should indicate that the group value in the ddply function should match another dataframe. A dplyr solution or solution using any other package would be appreciated as well.

Code to create FIPS dataset:

download.file('http://www2.census.gov/geo/docs/reference/codes/files/national_county.txt',
              './nationalfips.txt')

fips <- read.csv('./nationalfips.txt', 
                 stringsAsFactors = FALSE, colClasses = 'character', header = FALSE)
names(fips) <- c('state', 'statefips', 'countyfips', 'countyname', 'classfips')

# remove 'County' from countyname
fips$countyname <- sub('County', '', fips$countyname, fixed = TRUE)
fips$countyname <- stringr::str_trim(fips$countyname)
4

2 回答 2

2

这是 dplyr 的一种方法。我首先按状态加入tomatch带有 FIPS 名称的 data.frame(仅允许状态内匹配):

require(dplyr)
df <- tomatch %>% 
  left_join(fips, by="state")

接下来,我注意到很多县没有“圣”,而是“圣”。在 FIPS 数据集中。首先清理它应该可以改善获得的结果。

df <- df %>%
    mutate(county_clean = gsub("Saint", "St.", county))

然后,将这个 data.frame 按县分组,并用 adist 计算距离:

df <- df %>%
  group_by(county_clean) %>%                # Calculate the distance per county
  mutate(dist = diag(adist(county_clean, countyname, partial=TRUE))) %>%
  arrange(county, dist) # Used this for visual inspection.

请注意,我从结果矩阵中取出对角线,因为 adist 返回一个 nxm 矩阵,其中 n 表示 x 向量,m 表示 y 向量(它计算所有组合)。或者,您可以添加 agrep 结果:

df <- df %>%
  rowwise() %>% # 'group_by' a single row. 
  mutate(agrep_result = agrepl(county_clean, countyname, max.distance = 0.3)) %>%
  ungroup()   # Always a good idea to remove 'groups' after you're done.

然后像以前一样过滤,取最小距离:

df <- df %>%
  group_by(county_clean) %>%   # Causes it to calculate the 'min' per group
  filter(dist == min(dist)) %>%
  ungroup()

请注意,这可能会导致为tomatch.
或者,一次完成所有操作(一旦我确信它正在做它应该做的事情,我通常会将代码更改为这种格式):

df <- tomatch %>% 
  # Join on all names in the relevant state and clean 'St.'
  left_join(fips, by="state") %>%
  mutate(county_clean = gsub("Saint", "St.", county)) %>% 

  # Calculate the distances, per original county name.
  group_by(county_clean) %>%                
  mutate(dist = diag(adist(county_clean, countyname, partial=TRUE))) %>%

  # Append the agrepl result
  rowwise() %>%
  mutate(string_agrep = agrepl(county_clean, countyname, max.distance = 0.3)) %>%
  ungroup() %>%  

  # Only retain minimum distances
  group_by(county_clean) %>%   
  filter(dist == min(dist))

两种情况的结果:

              county      county_clean state                countyname dist string_agrep
1         Beauregard        Beauregard    LA         Beauregard Parish    0         TRUE
2            De Soto           De Soto    LA            De Soto Parish    0         TRUE
3             Dekalb            Dekalb    GA                    DeKalb    1         TRUE
4            Webster           Webster    LA            Webster Parish    0         TRUE
5       Saint Joseph        St. Joseph    IN                St. Joseph    0         TRUE
6     West Feliciana    West Feliciana    LA     West Feliciana Parish    0         TRUE
7  Ketchikan Gateway Ketchikan Gateway    AK Ketchikan Gateway Borough    0         TRUE
8         Evangeline        Evangeline    LA         Evangeline Parish    0         TRUE
9      Richmond City     Richmond City    VA             Richmond city    1         TRUE
10        Saint Mary          St. Mary    LA           St. Mary Parish    0         TRUE
11  Saint Louis City    St. Louis City    MO            St. Louis city    1         TRUE
12            Mclean            Mclean    KY                    McLean    1         TRUE
13             Union             Union    LA              Union Parish    0         TRUE
14         Bienville         Bienville    LA          Bienville Parish    0         TRUE
15    Covington City    Covington City    VA            Covington city    1         TRUE
16 Martinsville City Martinsville City    VA         Martinsville city    1         TRUE
17         Claiborne         Claiborne    LA          Claiborne Parish    0         TRUE
18    King And Queen    King And Queen    VA            King and Queen    1         TRUE
19            Mclean            Mclean    ND                    McLean    1         TRUE
20            Mcminn            Mcminn    TN                    McMinn    1         TRUE
21    Prince Georges    Prince Georges    MD           Prince George's    1         TRU  
于 2015-06-18T10:14:02.987 回答
1

没有示例数据,但尝试使用 agrep 而不是 adist 并仅搜索该州的名称

sapply(df_tomatch$county, function(x) agrep(x,df_matchby[df_matchby$state==dj_tomatch[x,'state'],'county'],value=TRUE)

您可以使用max.distance参数agrep来改变它们需要匹配的接近程度。此外,设置value=TRUE返回匹配字符串的值而不是匹配的位置。

于 2015-06-17T18:13:03.707 回答