我有一个包含搜索词(数字和文本)的 CSV 文件,我想将其与其他词(数字和文本)的列表进行比较,以确定是否有任何匹配项或潜在匹配项。然后我想将所有结果写入一个新的 CSV 以供手动审查。我正在使用fuzzywuzzy 插件来创建一个“分数”,以确定术语之间的匹配程度。理想情况下,我将能够过滤比率。
我当前的代码将文件行一对一而不是第一个文件中的一行与第二个文件中的所有行进行比较;这就是我需要的。
如何针对 file2 中的所有行对 file1 中的每一行进行模糊查找?
from fuzzywuzzy import fuzz
import csv
from itertools import zip_longest
f = open('FuzzyMatch2.csv', 'wt')
writer = csv.writer(f, lineterminator = '\n')
file1_loc = 'LookUp.csv'
file2_loc = 'Prod.csv'
file1 = csv.DictReader(open(file1_loc, 'r'), delimiter=',', quotechar='"')
file2 = csv.DictReader(open(file2_loc, 'r'), delimiter=',', quotechar='"')
for row in file1:
for l1, l2 in zip_longest(file1, file2):
if all((l1, l2)):
partial_ratio = fuzz.token_sort_ratio(str(l1['SearchTerm']), str(l2['Description']))
a = [l1,l2,partial_ratio]
writer.writerow(a)
f.close()
下面是上述代码的一个更简洁的版本,但它仍然存在问题。代码给出了错误
IndexError:列表索引超出范围
知道如何使列表在范围内并且代码工作吗?
from fuzzywuzzy import process
import csv
save_file = open('FuzzyResults.csv', 'wt')
writer = csv.writer(save_file, lineterminator = '\n')
def parse_csv(path):
with open(path,'r') as f:
for row in f:
row = row.split()
yield row
if __name__ == "__main__":
## Create lookup dictionary by parsing the products csv
data = {}
for row in parse_csv('Prod.csv'):
data[row[0]] = row[1]
## For each row in the lookup compute the partial ratio
for row in parse_csv("LookUp.csv"):
for found, score in process.extract(row, data, limit=100):
if score >= 10:
print('%d%% partial match: "%s" with "%s" ' % (score, row, found))
Digi_Results = [score, row, found]
writer.writerow(Digi_Results)
save_file.close()