我进行了 Cox 回归分析,包括四个变量(性别、年龄和两个二元解释变量),它们都与结果有显着关联。我使用了 R 中“survival”包中的 coxph 函数:
library(survival)
cox <- coxph(Surv(time, status_risk==1) ~ sex + age + stone_number +stone_size, data=cox_cut)
summary(cox1_3_cut)
Call:
coxph(formula = Surv(time, status_risk == 1) ~ sex + age +
stone_number + stone_size, data = cox_cut)
n= 582, number of events= 48
(82 observations deleted due to missingness)
coef exp(coef) se(coef) z Pr(>|z|)
sexfemale 0.76993 2.15961 0.34577 2.227 0.025966 *
age -0.03222 0.96829 0.01201 -2.682 0.007311 **
stone_number>=2 0.60646 1.83393 0.29942 2.025 0.042821 *
stone_size>10 1.02593 2.78969 0.29391 3.491 0.000482 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
exp(coef) exp(-coef) lower .95 upper .95
sexfemale 2.1596 0.4630 1.0966 4.2530
age 0.9683 1.0327 0.9458 0.9914
stone_number>=2 1.8339 0.5453 1.0198 3.2980
stone_size>10 2.7897 0.3585 1.5681 4.9629
我想制作一个预测得分表,其中包括四个变量和 4 个年龄分层组(30、40、50、60 岁)。此表中的所有危害必须除以一个预定义的危害,以获得每个年龄组的 HR。
如何计算 R 中每个特定年龄组的 95% CI 的 HR?