我正在尝试使用 Javascript 对弹簧上的质量进行 Runge-Kutta 实现,并使用 D3 将其可视化。目的是将其与 Forward Euler 进行比较并评论差异。我的 FE 工作正常,情节也很好,但 Runge-Kutta 正在向负面方向射击,并且从不环绕。
这是一个带有 vis 和代码的plunkr,但我也会添加 JS(仅适用于 ODE 求解器)。
// *** Functions for ODE Solvers *** //
function FEx (x, v, h)
{
return x + h*v;
}
function FEv (x, v, h)
{
var k = 1; var m = 0.5; var g = 0;
return v + h*( (-k/m)*x + g );
}
function RKx (x, v, h)
{
var k1 = FEx(x, v, h);
var k2 = FEx(x+h/2*k1, v+h/2, h);
var k3 = FEx(x+h/2*k2, v+h/2, h);
var k4 = FEx(x+h*k3, v+h, h);
return x + h/6*(k1 + 2*k2 + 2*k3 + k4);
}
function RKy (x, v, h)
{
var k1 = FEv(x, v, h);
var k2 = FEv(x+h/2, v+h/2*k1, h);
var k3 = FEv(x+h/2, v+h/2*k2, h);
var k4 = FEv(x+h, v+h*k3, h);
return v + h/6*(k1 + 2*k2 + 2*k3 + k4);
}
// FORWARD EULER
function forewardEuler (x, v, h, n)
{
// Initialize an array to hold the values
// JS doesn't really support multi-dimensional arrays
// so this is a "jagged" nested array
var values = new Array(n);
for(i = 0; i < values.length; i++)
values[i] = new Array(2);
// Initial conditions
values[0] = [x, v];
for (i = 1; i < n; ++i)
{
values[i][0] = FEx(values[i-1][0], values[i-1][1], h);
values[i][1] = FEv(values[i-1][0], values[i-1][1], h);
}
return values;
}
// 4TH ORDER RUNGE-KUTTA
function RK4 (x, v, h, n)
{
// Initialize an array to hold the values
var values = new Array(n);
for(i = 0; i < values.length; i++)
values[i] = new Array(2);
// Initial conditions
values[0] = [x, v];
for (i = 1; i < n; ++i)
{
values[i][0] = RKx(values[i-1][0], values[i-1][1], h);
values[i][1] = RKy(values[i-1][0], values[i-1][1], h);
}
return values;
}
// *** Setting up the data *** //
var rkValues = RK4(1, 0, 0.1, 100);
var feValues = forewardEuler(1, 0, 0.1, 100);