Functor
在 Haskell 中,您可以派生Foldable
并Traversable
自动使用deriving
. 但是,没有办法推导出Applicative
。考虑到有一种明显的方式来定义一个Applicative
实例(这相当于一个压缩的应用程序),没有任何方法可以启用deriving Applicative
吗?
2 回答
不,这一点都不明显。比较以下Applicative
实例:
[]
ZipList
Data.Sequence.Seq
,其Applicative
实例声明运行到数百行。IO
(->) r
parsec
,attoparsec
,regex-applicative
中的解析器- 包中的代理
pipes
。
这里几乎没有统一性,而且大多数情况都是不明显的。
正如David Young 评论的那样,[]
和ZipList
实例“最终都是两个不同的、同样有效Applicative
的列表类型实例”。
现在DerivingVia
已经发布(GHC-8.6 或更新版本),实际上可以在任何确定性数据类型Applicative
的帮助下推导出!也就是说,任何只有一个变体的数据类型:DeriveGeneric
data Foo x = Foo x | Fe -- This is non-deterministic and can't derive Applicative
data Bar x = Bar x x (Bar x) -- This is deterministic and can derive Applicative
data Baz x = Baz (Either Int x) [x] -- This is also ok, since [] and Either Int
-- are both Applicative
data Void x -- This is not ok, since pure would be impossible to define.
要派生Applicative
,我们首先需要定义一个用于通过泛型派生的包装器:
{-# LANGUAGE DerivingVia #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE DeriveGeneric #-}
module Generically1 where
import GHC.Generics
newtype Generically1 f x = Generically1 { generically1 :: f x }
fromg1 :: Generic1 f => Generically1 f a -> Rep1 f a
fromg1 = from1 . generically1
tog1 :: Generic1 f => Rep1 f x -> Generically1 f x
tog1 = Generically1 . to1
instance (Functor f, Generic1 f, Functor (Rep1 f))
=> Functor (Generically1 f) where
fmap f (Generically1 x) = Generically1 $ fmap f x
instance (Functor f, Generic1 f, Applicative (Rep1 f))
=> Applicative (Generically1 f) where
pure = tog1 . pure
f <*> x = tog1 $ fromg1 f <*> fromg1 x
instance (Functor f, Generic1 f, Monad (Rep1 f)) => Monad (Generically1 f) where
return = pure
m >>= f = tog1 $ fromg1 m >>= fromg1 . f
为了使用它,我们首先Generic1
为我们的数据类型派生,然后Applicative
通过我们的新Generically1
包装器派生:
data Foo x = Foo x (Int -> x) (Foo x)
deriving (Functor, Generic1)
deriving (Applicative, Monad) via Generically1 Foo
data Bar x = Bar x (IO x)
deriving (Functor, Generic1)
deriving (Applicative, Monad) via Generically1 Bar
data Baz f x = Baz (f x) (f x)
deriving (Show, Functor, Generic1)
deriving (Applicative, Monad) via Generically1 (Baz f)
如您所见,我们不仅Applicative
为我们的数据类型派生,而且还可以派生Monad
。
这样做的原因是这些数据类型的表示Applicative
和表示都有实例。参见例如产品类型 (:*:)。但是Sum 类型 (:+:)没有实例,这就是为什么我们不能为非确定性类型派生它的原因。Monad
Generic1
Applicative
您可以通过在 GHCi 中Generic1
编写来查看数据类型的表示。:kind! Rep1 Foo
以下是上述类型表示的简化版本(不包括元数据):
type family Simplify x where
Simplify (M1 i c f) = Simplify f
Simplify (f :+: g) = Simplify f :+: Simplify g
Simplify (f :*: g) = Simplify f :*: Simplify g
Simplify x = x
λ> :kind! Simplify (Rep1 Foo)
Simplify (Rep1 Foo) :: * -> *
= Par1 :*: (Rec1 ((->) Int) :*: Rec1 Foo)
λ> :kind! Simplify (Rep1 Bar)
Simplify (Rep1 Bar) :: * -> *
= Par1 :*: Rec1 IO
λ> :kind! forall f. Simplify (Rep1 (Baz f))
forall f. Simplify (Rep1 (Baz f)) :: k -> *
= forall (f :: k -> *). Rec1 f :*: Rec1 f
编辑:Generically1
包装器也可在此处获得:https ://hackage.haskell.org/package/generic-data-0.7.0.0/docs/Generic-Data.html#t:Genericly1