前注:这是这个问题的后续问题。
我在 R 中编写了一个 Boggle Game Solver(参见这个github 页面的源代码),但发现它的性能令人失望。
这是它的工作原理...
# Say we have the following set of letters
bog.letters <- c("t", "e", "n", "s", "d", "a", "i", "o",
"l", "e", "r", "o", "c", "f", "i", "e")
# We get the list of paths (permutations) from a pre-existing list
paths <- paths.by.length[[6]] # 6th element corresponds to 8-element "paths"
dim(paths) # [1] 183472 8
# The following function is the key here,
# mapping the 183,472 combinations to the 16 letters
candidates <- apply(X = paths, MARGIN = 1, FUN = function(x) paste(bog.letters[x], collapse=""))
# The only remaining thing is to intersect the candidate words
# with the actual words from our dictionary
dict.words <- dict.fr$mot[dict.fr$taille == 8]
valid.words <- intersect(candidates, dict.words)
13个字母单词候选的可重复示例
bog.letters <- c("t", "e", "n", "s", "d", "a", "i", "o", "l", "e", "r", "o", "c", "f", "i", "e")
n.letters <- 13
paths <- structure(list(V1 = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), V2 = c(2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2), V3 = c(3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3),
V4 = c(4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4), V5 = c(7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7), V6 = c(6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6), V7 = c(5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5), V8 = c(9, 9, 9,
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 9, 9), V9 = c(10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10), V10 = c(11, 11, 11, 11,
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 13, 13, 13, 13,
13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14), V11 = c(8, 8,
12, 12, 12, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 14, 14,
14, 14, 14, 14, 14, 11, 11, 11, 11, 11, 11, 11, 11), V12 = c(12,
12, 15, 15, 16, 15, 15, 12, 12, 14, 16, 12, 12, 15, 15, 11,
11, 11, 11, 15, 15, 15, 8, 12, 12, 12, 15, 15, 16, 16), V13 = c(15,
16, 14, 16, 15, 12, 16, 8, 16, 13, 12, 8, 15, 12, 14, 8,
12, 15, 16, 11, 12, 16, 12, 8, 15, 16, 12, 16, 12, 15)), .Names = c("V1",
"V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11",
"V12", "V13"), row.names = c(NA, 30L), class = "data.frame")
candidates <- apply(X = paths, MARGIN = 1, FUN = function(x) paste(bog.letters[x], collapse=""))
对于这么小的路径列表,这非常快。但是 13 个字母单词的实际路径数是 2,644,520。因此,找到所有候选人可能需要一分钟甚至更长时间。使用 doSNOW,我可以并行化搜索,从而大大减少总时间,但这样做有一个巨大的缺点:当使用正常循环时,只要我到达没有更多单词的点,我就可以退出/中断成立。这与并行过程无关(不可能?)。
所以我的问题是:你能想出一个更好的函数/算法来完成这项任务吗?一些网站在几秒钟内就为 Boggle 游戏提供了解决方案......要么他们生成所有可能的字母组合并将结果存储在数据库中(!),要么他们显然使用更好的算法(可能是编译语言)来实现这些结果。
有任何想法吗?