我的代码中有一条语句:
df.loc[i] = [df.iloc[0][0], i, np.nan]
where是我在该语句所在i
的循环中使用的迭代变量,是我导入的 numpy 模块,并且是一个看起来像这样的 DataFrame:for
np
df
build_number name cycles
0 390 adpcm 21598
1 390 aes 5441
2 390 dfadd 463
3 390 dfdiv 1323
4 390 dfmul 167
5 390 dfsin 39589
6 390 gsm 6417
7 390 mips 4205
8 390 mpeg2 1993
9 390 sha 348417
如您所见,我的代码中的语句用于将新行插入到我的 DataFrame中,并用一个值df
填充下面的最后一列(在新插入的行中)。cycles
NaN
但是,这样做时,我收到以下警告消息:
/usr/local/bin/ipython:28: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
查看文档,我仍然不明白我在这里遇到的问题或风险是什么。我认为已经使用loc
并iloc
遵循了建议?
谢谢你。
在此处编辑 应@EdChum 的要求,我在使用上述语句的函数中添加了以下内容:
def patch_missing_benchmarks(refined_dataframe):
'''
Patches up a given DataFrame, ensuring that all build_numbers have the complete
set of benchmark names, inserting NaN values at the column where the data is
supposed to be residing in.
Accepts:
--------
* refined_dataframe
DataFrame that was returned from the remove_early_retries() function and that
contains no duplicates of benchmarks within a given build number and also has been
sorted nicely to ensure that build numbers are in alphabetical order.
However, this function can also accept the DataFrame that has not been sorted, so
long as it has no repitition of benchmark names within a given build number.
Returns:
-------
* patched_benchmark_df
DataFrame with all Build numbers filled with the complete set of benchmark data,
with those previously missing benchmarks now having NaN values for their data.
'''
patched_df_list = []
benchmark_list = ['adpcm', 'aes', 'blowfish', 'dfadd', 'dfdiv', 'dfmul',
'dfsin', 'gsm', 'jpeg', 'mips', 'mpeg2', 'sha']
benchmark_series = pd.Series(data = benchmark_list)
for number in refined_dataframe['build_number'].drop_duplicates().values:
# df must be a DataFrame whose data has been sorted according to build_number
# followed by benchmark name
df = refined_dataframe.query('build_number == %d' % number)
# Now we compare the benchmark names present in our section of the DataFrame
# with the Series containing the complete collection of Benchmark names and
# get back a boolean DataFrame telling us precisely what benchmark names
# are missing
boolean_bench = benchmark_series.isin(df['name'])
list_names = []
for i in range(0, len(boolean_bench)):
if boolean_bench[i] == False:
name_to_insert = benchmark_series[i]
list_names.append(name_to_insert)
else:
continue
print 'These are the missing benchmarks for build number',number,':'
print list_names
for i in list_names:
# create a new row with index that is benchmark name itself to avoid overwriting
# any existing data, then insert the right values into that row, filling in the
# space name with the right benchmark name, and missing data with NaN
df.loc[i] = [df.iloc[0][0], i, np.nan]
patched_for_benchmarks_df = df.sort_index(by=['build_number',
'name']).reset_index(drop = True)
patched_df_list.append(patched_for_benchmarks_df)
# we make sure we call a dropna method at threshold 2 to drop those rows whose benchmark
# names as well as cycles names are NaN, leaving behind the newly inserted rows with
# benchmark names but that now have the data as NaN values
patched_benchmark_df = pd.concat(objs = patched_df_list, ignore_index =
True).sort_index(by= ['build_number',
'name']).dropna(thresh = 2).reset_index(drop = True)
return patched_benchmark_df