我正在使用 plm 包来估计面板数据上的随机效应模型。阅读这个关于 plm 包中预测的问题让我有些怀疑。它究竟是如何工作的?我尝试了 3 种替代方法,它们给出了不同的解决方案。为什么 ?
library(data.table); library(plm)
set.seed(100)
DT <- data.table(CJ(id=c(1,2,3,4), time=c(1:10)))
DT[, x1:=rnorm(40)]
DT[, x2:=rnorm(40)]
DT[, y:=x1 + 2*x2 + rnorm(40)/10 + id]
DT <- DT[!(id=="a" & time==4)] # just to make it an unbalanced panel
setkey(DT, id, time)
summary(plmFEit <- plm(data=DT, id=c("id","time"), formula=y ~ x1 + x2, model="random"))
###################
#method 1
###################
# Extract the fitted values from the plm object
FV <- data.table(plmFEit$model, residuals=as.numeric(plmFEit$residuals))
FV[, y := as.numeric(y)]
FV[, x1 := as.numeric(x1)]
FV[, x2 := as.numeric(x2)]
DT <- merge(x=DT, y=FV, by=c("y","x1","x2"), all=TRUE)
DT[, fitted.plm_1 := as.numeric(y) - as.numeric(residuals)]
###################
#method 2
###################
# calculate the fitted values
DT[, fitted.plm_2 := as.numeric(coef(plmFEit)[1]+coef(plmFEit)[2] * x1 + coef(plmFEit)[3]*x2)]
###################
#method 3
###################
# using pmodel.response
DT$fitted.plm_3 <-pmodel.response(plmFEit,model='random')