Bryan Chen 的答案的一个变体看起来更丑,但更容易扩展到多个检查,并且不需要复制在D<type-with-f>
and之间共享的代码,它D<type-without-f>
是使用继承链,其中每个步骤都会检查一个额外的成员。唯一需要的重复是构造函数的继承,如果合适的话。
struct A {
void f() { }
void g() { }
void i() { }
};
// The generic case. D<T, char[N]> simply provides what D<T, char[N+1]> provides.
template <typename T, typename U = char[1]>
struct D : D<T, char[sizeof(U) + 1]> {
using D<T, char[sizeof(U) + 1]>::D;
};
// The end of the chain. This is where T gets inherited. It declares all of its own
// specialisations as its friends, so that they can access other members of T.
template <typename T>
struct D<T, char[6]> : private T {
template <typename, typename>
friend struct D;
D(int) { }
void fun() { }
};
// Check for T::f.
template <typename T>
struct D<T, char[2 + !sizeof(&T::f)]> : D<T, char[3]> {
using D<T, char[3]>::D;
using T::f;
};
// Check for T::g.
template <typename T>
struct D<T, char[3 + !sizeof(&T::g)]> : D<T, char[4]> {
using D<T, char[4]>::D;
using T::g;
};
// Check for T::h.
template <typename T>
struct D<T, char[4 + !sizeof(&T::h)]> : D<T, char[5]> {
using D<T, char[5]>::D;
using T::h;
};
// Check for T::i.
template <typename T>
struct D<T, char[5 + !sizeof(&T::i)]> : D<T, char[6]> {
using D<T, char[6]>::D;
using T::i;
};
int main() {
D<A> d = 4; // ok: verify that constructors got inherited
// A &a = d; // error: verify that inheritance of A is private
d.f(); // ok: verify that f got inherited
d.g(); // ok: verify that g got inherited
// d.h(); // error: verify that h is not available
d.i(); // ok: verify that i got inherited
d.fun(); // ok: verify that the inheritance chain didn't get broken
}
注意:而不是检查&T::f
,您可能想要做一些事情std::declval<T>().f()
。前者不能处理重载函数。