2

我正在寻找一种健壮的算法(或描述算法的论文),它可以使用封闭形式的解决方案找到多项式的根(理想情况下可以找到第 4 个 debree,但任何事情都可以)。我只对真正的根源感兴趣。

我第一次解决二次方程涉及到这个(我也有类似风格的三次/四次代码,但现在让我们关注二次方程):

/**
 *  @brief a simple quadratic equation solver
 *
 *  With double-precision floating-point, this reaches 1e-12 worst-case and 1e-15 average
 *  precision of the roots (the value of the function in the roots). The roots can be however
 *  quite far from the true roots, up to 1e-10 worst-case and 1e-18 average absolute difference
 *  for cases when two roots exist. If only a single root exists, the worst-case precision is
 *  1e-13 and average-case precision is 1e-18.
 *
 *  With single-precision floating-point, this reaches 1e-3 worst-case and 1e-7 average
 *  precision of the roots (the value of the function in the roots). The roots can be however
 *  quite far from the true roots, up to 1e-1 worst-case and 1e-10 average absolute difference
 *  for cases when two roots exist. If only a single root exists, the worst-case precision is
 *  1e+2 (!) and average-case precision is 1e-2. Do not use single-precision floating point,
 *  except if pressed by time.
 *
 *  All the precision measurements are scaled by the maximum absolute coefficient value.
 *
 *  @tparam T is data type of the arguments (default double)
 *  @tparam b_sort_roots is root sorting flag (if set, the roots are
 *      given in ascending (not absolute) value; default true)
 *  @tparam n_2nd_order_coeff_log10_thresh is base 10 logarithm of threshold
 *      on the first coefficient (if below threshold, the equation is a linear one; default -6)
 *  @tparam n_zero_discriminant_log10_thresh is base 10 logarithm of threshold
 *      on the discriminant (if below negative threshold, the equation does not
 *      have a real root, if below threshold, the equation has just a single solution; default -6)
 */
template <class T = double, const bool b_sort_roots = true,
    const int n_2nd_order_coeff_log10_thresh = -6,
    const int n_zero_discriminant_log10_thresh = -6>
class CQuadraticEq {
protected:
    T a; /**< @brief the 2nd order coefficient */
    T b; /**< @brief the 1st order coefficient */
    T c; /**< @brief 0th order coefficient */
    T p_real_root[2]; /**< @brief list of the roots (real parts) */
    //T p_im_root[2]; // imaginary part of the roots
    size_t n_real_root_num; /**< @brief number of real roots */

public:
    /**
     *  @brief default constructor; solves for roots of \f$ax^2 + bx + c = 0\f$
     *
     *  This finds roots of the given equation. It tends to find two identical roots instead of one, rather
     *  than missing one of two different roots - the number of roots found is therefore orientational,
     *  as the roots might have the same value.
     *
     *  @param[in] _a is the 2nd order coefficient
     *  @param[in] _b is the 1st order coefficient
     *  @param[in] _c is 0th order coefficient
     */
    CQuadraticEq(T _a, T _b, T _c) // ax2 + bx + c = 0
        :a(_a), b(_b), c(_c)
    {
        T _aa = fabs(_a);
        if(_aa < f_Power_Static(10, n_2nd_order_coeff_log10_thresh)) { // otherwise division by a yields large numbers, this is then more precise
            p_real_root[0] = -_c / _b;
            //p_im_root[0] = 0;
            n_real_root_num = 1;
            return;
        }
        // a simple linear equation

        if(_aa < 1) { // do not divide always, that makes it worse
            _b /= _a;
            _c /= _a;
            _a = 1;

            // could copy the code here and optimize away division by _a (optimizing compiler might do it for us)
        }
        // improve numerical stability if the coeffs are very small

        const double f_thresh = f_Power_Static(10, n_zero_discriminant_log10_thresh);
        double f_disc = _b * _b - 4 * _a * _c;
        if(f_disc < -f_thresh) // only really negative
            n_real_root_num = 0; // only two complex roots
        else if(/*fabs(f_disc) < f_thresh*/f_disc <= f_thresh) { // otherwise gives problems for double root situations
            p_real_root[0] = T(-_b / (2 * _a));
            n_real_root_num = 1;
        } else {
            f_disc = sqrt(f_disc);
            int i = (b_sort_roots)? ((_a > 0)? 0 : 1) : 0; // produce sorted roots, if required
            p_real_root[i] = T((-_b - f_disc) / (2 * _a));
            p_real_root[1 - i] = T((-_b + f_disc) / (2 * _a));
            //p_im_root[0] = 0;
            //p_im_root[1] = 0;
            n_real_root_num = 2;
        }
    }

    /**
     *  @brief gets number of real roots
     *  @return Returns number of real roots (0 to 2).
     */
    size_t n_RealRoot_Num() const
    {
        _ASSERTE(n_real_root_num >= 0);
        return n_real_root_num;
    }

    /**
     *  @brief gets value of a real root
     *  @param[in] n_index is zero-based index of the root
     *  @return Returns value of the specified root.
     */
    T f_RealRoot(size_t n_index) const
    {
        _ASSERTE(n_index < 2 && n_index < n_real_root_num);
        return p_real_root[n_index];
    }

    /**
     *  @brief evaluates the equation for a given argument
     *  @param[in] f_x is value of the argument \f$x\f$
     *  @return Returns value of \f$ax^2 + bx + c\f$.
     */
    T operator ()(T f_x) const
    {
        T f_x2 = f_x * f_x;
        return f_x2 * a + f_x * b + c;
    }
};

代码很糟糕,我讨厌所有的门槛。但是对于在区间中有根的随机方程[-100, 100],这还不错:

root response precision 1e-100: 6315 cases
root response precision 1e-19: 2 cases
root response precision 1e-17: 2 cases
root response precision 1e-16: 6 cases
root response precision 1e-15: 6333 cases
root response precision 1e-14: 3765 cases
root response precision 1e-13: 241 cases
root response precision 1e-12: 3 cases
2-root solution precision 1e-100: 5353 cases
2-root solution precision 1e-19: 656 cases
2-root solution precision 1e-18: 4481 cases
2-root solution precision 1e-17: 2312 cases
2-root solution precision 1e-16: 455 cases
2-root solution precision 1e-15: 68 cases
2-root solution precision 1e-14: 7 cases
2-root solution precision 1e-13: 2 cases
1-root solution precision 1e-100: 3022 cases
1-root solution precision 1e-19: 38 cases
1-root solution precision 1e-18: 197 cases
1-root solution precision 1e-17: 68 cases
1-root solution precision 1e-16: 7 cases
1-root solution precision 1e-15: 1 cases

请注意,此精度与系数的大小有关,通常在 10^6 范围内(因此最终精度远非完美,但可能大部分可用)。然而,如果没有阈值,它几乎是无用的。

我尝试过使用多精度算术,这通常效果很好,但往往会拒绝许多根,因为多项式的系数不是多精度的,并且某些多项式不能精确表示(如果在 2 度中有双根多项式,它通常要么将其分成两个根(我不介意),要么说根本没有根)。如果我想恢复甚至稍微不精确的根,我的代码就会变得复杂并且充满阈值。

到目前为止,我已经尝试过使用 CCmath,但要么我不能正确使用它,要么精度真的很差。此外,它在plrt().

我曾尝试使用 GNU 科学库gsl_poly_solve_quadratic(),但这似乎是一种幼稚的方法,并且在数值上不是很稳定。

天真地使用std::complex数字也被证明是一个非常糟糕的主意,因为精度和速度都可能很差(尤其是在代码中包含大量超越函数的三次/四次方程)。

将根恢复为复数是唯一的方法吗?然后不会遗漏任何根,用户可以选择根需要的精确度(从而忽略不太精确的根中的小假想分量)。

4

1 回答 1

2

这并没有真正回答你的问题,但我认为你可以改进你所拥有的,因为你目前在b^2 >> ac. 在这种情况下,您最终会得到一个公式,(-b + (b + eps))/(2 * a)即取消 b 可能会丢失许多有效数字eps

处理这个问题的正确方法是对一个根使用二次根的“正常”方程,而另一个根则使用鲜为人知的“替代”或“倒置”方程。你带它们的哪个方向取决于 的符号_b

沿着以下这些行更改您的代码应该会减少由此产生的错误。

if( _b > 0 ) {
    p_real_root[i] = T((-_b - f_disc) / (2 * _a));
    p_real_root[1 - i] = T((2 * _c) / (-_b - f_disc));
}
else{
    p_real_root[i] = T((2 * _c) / (-_b + f_disc));
    p_real_root[1 - i] = T((-_b + f_disc) / (2 * _a));
}
于 2015-01-15T22:43:25.270 回答