我正在尝试分析一个长时间运行的 python 脚本。该脚本使用gdal 模块对栅格 GIS 数据集进行一些空间分析。该脚本当前使用三个文件,循环光栅像素的主脚本称为find_pixel_pairs.py
,一个简单的缓存lrucache.py
和一些杂项类在utils.py
. 我已经在一个中等大小的数据集上分析了代码。 pstats
返回:
p.sort_stats('cumulative').print_stats(20)
Thu May 6 19:16:50 2010 phes.profile
355483738 function calls in 11644.421 CPU seconds
Ordered by: cumulative time
List reduced from 86 to 20 due to restriction <20>
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.008 0.008 11644.421 11644.421 <string>:1(<module>)
1 11064.926 11064.926 11644.413 11644.413 find_pixel_pairs.py:49(phes)
340135349 544.143 0.000 572.481 0.000 utils.py:173(extent_iterator)
8831020 18.492 0.000 18.492 0.000 {range}
231922 3.414 0.000 8.128 0.000 utils.py:152(get_block_in_bands)
142739 1.303 0.000 4.173 0.000 utils.py:97(search_extent_rect)
745181 1.936 0.000 2.500 0.000 find_pixel_pairs.py:40(is_no_data)
285478 1.801 0.000 2.271 0.000 utils.py:98(intify)
231922 1.198 0.000 2.013 0.000 utils.py:116(block_to_pixel_extent)
695766 1.990 0.000 1.990 0.000 lrucache.py:42(get)
1213166 1.265 0.000 1.265 0.000 {min}
1031737 1.034 0.000 1.034 0.000 {isinstance}
142740 0.563 0.000 0.909 0.000 utils.py:122(find_block_extent)
463844 0.611 0.000 0.611 0.000 utils.py:112(block_to_pixel_coord)
745274 0.565 0.000 0.565 0.000 {method 'append' of 'list' objects}
285478 0.346 0.000 0.346 0.000 {max}
285480 0.346 0.000 0.346 0.000 utils.py:109(pixel_coord_to_block_coord)
324 0.002 0.000 0.188 0.001 utils.py:27(__init__)
324 0.016 0.000 0.186 0.001 gdal.py:848(ReadAsArray)
1 0.000 0.000 0.160 0.160 utils.py:50(__init__)
前两个调用包含主循环 - 整个分析。剩余的调用总和不到 11644 秒中的 625 个。剩下的 11,000 秒用在了哪里?这一切都在的主循环中find_pixel_pairs.py
吗?如果是这样,我能找出哪些代码行占用了大部分时间吗?