我正在尝试通过 Runge-Kutta 四阶数值求解双摆。
要求解的微分方程在下一页上:
http://www.myphysicslab.com/dbl_pendulum.html
甚至还有一个动画显示角度 1 和 2。我想通过 Runge-Kutta 方法求解出现在页面下方的方程。
将这些结果打印到文件中,然后使用 gnuplot 绘制它们。但是,我的程序无法运行,找不到原因,希望您能帮帮我。
我在 Fortran 中的代码:
PROGRAM MAIN
!In this program the double pendulum is solved by Rugen-Kutta method of order 4
!variables required
INTEGER, PARAMETER:: PREC = SELECTED_REAL_KIND(9,99)
REAL(PREC), DIMENSION(:), ALLOCATABLE :: theta1, theta2, omega1, omega2, t
REAL(PREC) :: LEN1, LEN2, M1, M2, G, PI, DT
!The following variables are for the Runge-Kutta
REAL(PREC) :: K11, K12, K13, K14, K21, K22, K23, K24
REAL(PREC) :: K31, K32, K33, K34, K41, K42, K43, K44
INTEGER :: I, J, N
!Definition of variables needed
PI= 4.*ATAN(1.)
I=0
G=9.8
DT=0.0003 !change over time
T(0)= 0.0 !initial time
!number of repetitions
n=500000
ALLOCATE (theta1(0:n),omega1(0:n),theta2(0:n),omega2(0:n),t(0:n))
!Initials values are given by the user
PRINT*, 'First pendulum'
CALL INICIALIZA(THETA1, OMEGA1, N, LEN1, M1)
PRINT*, ' '
PRINT*, 'Second pendulum'
CALL INICIALIZA(THETA2, OMEGA2, N, LEN2, M2)
!Runge-kutta method
DO
!Runge-Kutta fourth order
!
K11 = DT*OMEGA1(I)
K21 = DT*OMEGA2(I)
K31 = DT*DOM1(M1, M2, THETA1(I), THETA2(I) &
, OMEGA1(I), OMEGA2(I), LEN1, LEN2, G)
K41 = DT*DOM2(M1, M2, THETA1(I), THETA2(I) &
, OMEGA1(I), OMEGA2(I), LEN1, LEN2, G)
!
K12 = DT*(OMEGA1(I) + K11/2.0)
K22 = DT*(OMEGA2(I) + K21/2.0)
K32 = DT*DOM1(M1, M2, (THETA1(I) + K11/2.0), (THETA2(I) + K21/2.0) &
, (OMEGA1(I) + K31/2.0), (OMEGA2(I) + K41/2.0), LEN1, LEN2, G)
K42 = DT*DOM2(M1, M2, (THETA1(I) + K11/2.0), (THETA2(I) + K21/2.0) &
, (OMEGA1(I) + K31/2.0), (OMEGA2(I) + K41/2.0), LEN1, LEN2, G)
!
K13 = DT*(OMEGA1(I) + K12/2.0)
K23 = DT*(OMEGA1(I) + K22/2.0)
K33 = DT*DOM1(M1, M2, (THETA1(I) + K12/2.0), (THETA2(I) + K22/2.0) &
, (OMEGA1(I) + K32/2.0), (OMEGA2(I) + K42/2.0), LEN1, LEN2, G)
K43 = DT*DOM2(M1, M2, (THETA1(I) + K12/2.0), (THETA2(I) + K22/2.0) &
, (OMEGA1(I) + K32/2.0), (OMEGA2(I) + K42/2.0), LEN1, LEN2, G)
!
K14 = DT*(OMEGA1(I) + K13)
K24 = DT*(OMEGA1(I) + K23)
K34 = DT*DOM1(M1, M2, (THETA1(I) + K13), (THETA2(I) + K23) &
, (OMEGA1(I) + K33), (OMEGA2(I) + K43), LEN1, LEN2, G)
K44 = DT*DOM2(M1, M2, (THETA1(I) + K13), (THETA2(I) + K23) &
, (OMEGA1(I) + K33), (OMEGA2(I) + K43), LEN1, LEN2, G)
!
THETA1(I+1) = THETA1(I)+((K11+(2.0*(K12+K13))+K14)/6.0)
THETA2(I+1) = THETA2(I)+((K21+(2.0*(K22+K23))+K24)/6.0)
OMEGA1(I+1) = OMEGA1(I)+((K31+(2.0*(K32+K33))+K34)/6.0)
OMEGA2(I+1) = OMEGA2(I)+((K41+(2.0*(K42+K43))+K44)/6.0)
!
if (theta1(i+1) > PI ) theta1(i+1)=theta1(i+1)-2.*PI
if (theta1(i+1) < -PI) theta1(i+1)=theta1(i+1)+2.*PI
if (theta2(i+1) > PI ) theta2(i+1)=theta2(i+1)-2.*PI
if (theta2(i+1) < -PI) theta2(i+1)=theta2(i+1)+2.*PI
t(i+1) = t(i) + dt
IF (i >= n-1) EXIT
i=i+1
ENDDO
!The results are saved in a file
OPEN (UNIT=10,FILE='dou2.dat',STATUS='UNKNOWN')
do j=0,n
wRITE(10,*) theta1(j),theta2(j),omega1(j),omega2(j),t(j)
end do
CLOSE(10)
END PROGRAM MAIN
!Subroutine to initial values
SUBROUTINE inicializa(theta, omega, n ,length, m)
INTEGER, PARAMETER:: PREC = SELECTED_REAL_KIND(9,99)
INTEGER, INTENT (IN):: n
REAL(PREC), DIMENSION(0:n):: theta, omega
REAL(PREC):: length, m
print*,'starting angle'
read*, theta(0)
print*,'Initial angular velocity'
read*, omega(0)
print*,'Lenght of pendulum'
read*, length
print*, 'Mass pendulum'
read*, m
END SUBROUTINE inicializa
!Functions that determine the derivative of omega (the angular velocity)
REAL FUNCTION DOM1(N1, N2, X1, X2, Y1, Y2, L1, L2, A)
INTEGER, PARAMETER:: PREC = SELECTED_REAL_KIND(9,99)
REAL(PREC) :: N1, N2, X1, X2, Y1, Y2, L1, L2, A
DOM1 = ((-A*((2.0*N1)+N2)*SIN(X1))-(N2*A*SIN(X1-(2.0*X2))) &
-(2.0*SIN(X1-X2)*N2*((Y2*Y2*L2)+(Y1*Y1*L1*COS(X1-X2))))) &
/(L1*((2.0*N1)+N2-(N2*COS((2.0*X1)-(2.0*X2)))))
END FUNCTION DOM1
REAL FUNCTION DOM2(N1, N2, X1, X2, Y1, Y2, L1, L2, A)
INTEGER, PARAMETER:: PREC = SELECTED_REAL_KIND(9,99)
REAL(PREC) :: N1, N2, X1, X2, Y1, Y2, L1, L2, A
DOM2 = (2.0*SIN(X1-X2)*((Y1*Y1*L1*(N1+N2))+(A*(N1+N2)*COS(X1)) &
+(Y2*Y2*L2*N2*COS(X1-X2))))/(L2*((2.0*N1)+N2 &
-N2*COS((2.0*X1)-(2.0*X2))))
END FUNCTION DOM2
这是该方法的一个很好的描述:http: //mathworld.wolfram.com/Runge-KuttaMethod.html
运行程序时出现的错误是:
Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Backtrace for this error:
#0 0xB763D163
#1 0xB763D800
#2 0xB774A3FF
#3 0x8048F17 in MAIN__ at doupend2.f90:?
Violación de segmento