我正在尝试学习 HMM GMM 实现并创建了一个简单的模型来检测某些声音(动物叫声等)
我正在尝试在 MATLAB 中使用 GMM(高斯混合)训练 HMM(隐马尔可夫模型)网络。
我有几个问题,我找不到任何信息。
1)应该mhmm_em()
为每个 HMM 状态循环调用函数还是自动完成?
如:
for each state
Initialize GMM’s and get parameters (use mixgauss_init.m)
end
Train HMM with EM (use mhmm_em.m)
2)
[LL, prior1, transmat1, mu1, Sigma1, mixmat1] = ...
mhmm_em(MFCCs, prior0, transmat0, mu0, Sigma0, mixmat0, 'max_iter', M);
最后一个Parameter,应该是高斯数还是number_of_states-1?
3)如果我们正在寻找最大似然,那么维特比在哪里发挥作用?
假设我想在使用我提取的声学特征向量训练我的模型后检测某种类型的动物/人类呼叫,我是否还需要在测试模式下使用 Viterbi 算法?
这让我有点困惑,我非常感谢对此部分的解释。
对于 HMM GMM 逻辑方面的代码的任何评论也将不胜感激。
谢谢
这是我的 MATLAB 例程;
O = 21; % Number of coefficients in a vector(coefficient)
M = 10; % Number of Gaussian mixtures
Q = 3; % Number of states (left to right)
% MFCC Parameters
Tw = 128; % analysis frame duration (ms)
Ts = 64; % analysis frame shift (ms)
alpha = 0.95; % preemphasis coefficient
R = [ 1 1000 ]; % frequency range to consider
f_bank = 20; % number of filterbank channels
C = 21; % number of cepstral coefficients
L = 22; % cepstral sine lifter parameter(?)
%Training
[speech, fs, nbits ] = wavread('Train.wav');
[MFCCs, FBEs, frames ] = mfcc( speech, fs, Tw, Ts, alpha, hamming, R, f_bank, C, L );
cov_type = 'full'; %the covariance type that is chosen as ҦullҠfor gaussians.
prior0 = normalise(rand(Q,1));
transmat0 = mk_stochastic(rand(Q,Q));
[mu0, Sigma0] = mixgauss_init(Q*M, dat, cov_type, 'kmeans');
mu0 = reshape(mu0, [O Q M]);
Sigma0 = reshape(Sigma0, [O O Q M]);
mixmat0 = mk_stochastic(rand(Q,M));
[LL, prior1, transmat1, mu1, Sigma1, mixmat1] = ...
mhmm_em(MFCCs, prior0, transmat0, mu0, Sigma0, mixmat0, 'max_iter', M);
%Testing
for i = 1:length(filelist)
fprintf('Processing %s\n', filelist(i).name);
[speech_tst, fs, nbits ] = wavread(filelist(i).name);
[MFCCs, FBEs, frames ] = ...
mfcc( speech_tst, fs, Tw, Ts, alpha, hamming, R, f_bank, C, L);
loglik(i) = mhmm_logprob( MFCCs,prior1, transmat1, mu1, Sigma1, mixmat1);
end;
[Winner, Winner_idx] = max(loglik);