在操作系统升级(Ubuntu 12.04 到 14.04)和重新安装 opencv 后,我无法编译一些代码。
一般问题是我使用以下过程从源代码编译的opencv的“非自由”部分:
mkdir ~/OpenCV && cd ~/OpenCV
wget http://downloads.sourceforge.net/project/opencvlibrary/opencv-unix/2.4.10/opencv-2.4.10.zip
unzip opencv-2.4.10.zip
cd opencv-2.4.10
cmake -D WITH_CUDA=ON -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr .
make
sudo make install
这将安装非自由库,如 cmake 的输出所示:
-- General configuration for OpenCV 2.4.10 =====================================
-- Version control: unknown
--
-- Platform:
-- Host: Linux 3.13.0-37-generic x86_64
-- CMake: 2.8.12.2
-- CMake generator: Unix Makefiles
-- CMake build tool: /usr/bin/make
-- Configuration: RELEASE
--
-- C/C++:
-- Built as dynamic libs?: YES
-- C++ Compiler: /usr/bin/c++ (ver 4.8.2)
-- C++ flags (Release): -fsigned-char -W -Wall -Werror=return-type -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wundef -Winit-self -Wpointer-arith -Wshadow -Wsign-promo -Wno-narrowing -Wno-delete-non-virtual-dtor -fdiagnostics-show-option -Wno-long-long -pthread -fomit-frame-pointer -msse -msse2 -msse3 -ffunction-sections -O3 -DNDEBUG -DNDEBUG
-- C++ flags (Debug): -fsigned-char -W -Wall -Werror=return-type -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wundef -Winit-self -Wpointer-arith -Wshadow -Wsign-promo -Wno-narrowing -Wno-delete-non-virtual-dtor -fdiagnostics-show-option -Wno-long-long -pthread -fomit-frame-pointer -msse -msse2 -msse3 -ffunction-sections -g -O0 -DDEBUG -D_DEBUG
-- C Compiler: /usr/bin/cc
-- C flags (Release): -fsigned-char -W -Wall -Werror=return-type -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wmissing-prototypes -Wstrict-prototypes -Wundef -Winit-self -Wpointer-arith -Wshadow -Wno-narrowing -fdiagnostics-show-option -Wno-long-long -pthread -fomit-frame-pointer -msse -msse2 -msse3 -ffunction-sections -O3 -DNDEBUG -DNDEBUG
-- C flags (Debug): -fsigned-char -W -Wall -Werror=return-type -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wmissing-prototypes -Wstrict-prototypes -Wundef -Winit-self -Wpointer-arith -Wshadow -Wno-narrowing -fdiagnostics-show-option -Wno-long-long -pthread -fomit-frame-pointer -msse -msse2 -msse3 -ffunction-sections -g -O0 -DDEBUG -D_DEBUG
-- Linker flags (Release):
-- Linker flags (Debug):
-- Precompiled headers: YES
--
-- OpenCV modules:
-- To be built: core flann imgproc highgui features2d calib3d ml video legacy objdetect photo gpu ocl nonfree contrib python stitching superres ts videostab
-- Disabled: world
-- Disabled by dependency: -
-- Unavailable: androidcamera dynamicuda java viz
--
-- GUI:
-- QT: NO
-- GTK+ 2.x: YES (ver 2.24.23)
-- GThread : YES (ver 2.40.0)
-- GtkGlExt: NO
-- OpenGL support: NO
-- VTK support: NO
--
-- Media I/O:
-- ZLib: /usr/lib/x86_64-linux-gnu/libz.so (ver 1.2.8)
-- JPEG: /usr/lib/x86_64-linux-gnu/libjpeg.so (ver )
-- PNG: /usr/lib/x86_64-linux-gnu/libpng.so (ver 1.2.50)
-- TIFF: /usr/lib/x86_64-linux-gnu/libtiff.so (ver 42 - 4.0.3)
-- JPEG 2000: /usr/lib/x86_64-linux-gnu/libjasper.so (ver 1.900.1)
-- OpenEXR: /usr/lib/x86_64-linux-gnu/libImath.so /usr/lib/x86_64-linux-gnu/libIlmImf.so /usr/lib/x86_64-linux-gnu/libIex.so /usr/lib/x86_64-linux-gnu/libHalf.so /usr/lib/x86_64-linux-gnu/libIlmThread.so (ver 1.6.1)
--
-- Video I/O:
-- DC1394 1.x: NO
-- DC1394 2.x: YES (ver 2.2.1)
-- FFMPEG: YES
-- codec: YES (ver 54.35.0)
-- format: YES (ver 54.20.4)
-- util: YES (ver 52.3.0)
-- swscale: YES (ver 2.1.1)
-- gentoo-style: YES
-- GStreamer: NO
-- OpenNI: NO
-- OpenNI PrimeSensor Modules: NO
-- PvAPI: NO
-- GigEVisionSDK: NO
-- UniCap: NO
-- UniCap ucil: NO
-- V4L/V4L2: NO/YES
-- XIMEA: NO
-- Xine: NO
--
-- Other third-party libraries:
-- Use IPP: NO
-- Use Eigen: YES (ver 3.2.0)
-- Use TBB: NO
-- Use OpenMP: NO
-- Use GCD NO
-- Use Concurrency NO
-- Use C=: NO
-- Use Cuda: NO
-- Use OpenCL: YES
--
-- OpenCL:
-- Version: dynamic
-- Include path: /home/ian/Downloads/opencv-2.4.10/3rdparty/include/opencl/1.2
-- Use AMD FFT: NO
-- Use AMD BLAS: NO
--
-- Python:
-- Interpreter: /usr/bin/python2 (ver 2.7.6)
-- Libraries: /usr/lib/x86_64-linux-gnu/libpython2.7.so (ver 2.7.6)
-- numpy: /usr/lib/python2.7/dist-packages/numpy/core/include (ver 1.8.2)
-- packages path: lib/python2.7/dist-packages
--
-- Java:
-- ant: NO
-- JNI: NO
-- Java tests: NO
--
-- Documentation:
-- Build Documentation: NO
-- Sphinx: NO
-- PdfLaTeX compiler: /usr/bin/pdflatex
--
-- Tests and samples:
-- Tests: YES
-- Performance tests: YES
-- C/C++ Examples: NO
--
-- Install path: /usr
--
-- cvconfig.h is in: /home/ian/Downloads/opencv-2.4.10
-- -----------------------------------------------------------------
--
但是,当我尝试编译以下代码时:
#include <opencv2/opencv.hpp>
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/nonfree/features2d.hpp"
#include <opencv2/nonfree/nonfree.hpp>
#include "boost/filesystem.hpp"
#include <iostream>
#include <stdio.h>
using namespace cv;
using namespace std;
using namespace boost::filesystem;
void createDicitonary(Mat & dictionary, string path_positive, string path_negative)
{
string filename;
//to store the current input image
Mat input;
//To store the keypoints that will be extracted by SIFT
vector<KeyPoint> keypoints;
//To store the SIFT descriptor of current image
Mat descriptor;
//To store all the descriptors that are extracted from all the images.
Mat featuresUnclustered;
//The SIFT feature extractor and descriptor
SiftDescriptorExtractor detector(500);
for (directory_iterator itr(path_positive); itr!=directory_iterator(); ++itr)
{
filename = path_positive+itr->path().leaf().string();
//open the file
input = imread(filename, CV_LOAD_IMAGE_GRAYSCALE); //Load as grayscale
//detect feature points
detector.detect(input, keypoints);
//compute the descriptors for each keypoint
detector.compute(input, keypoints,descriptor);
//put the all feature descriptors in a single Mat object
featuresUnclustered.push_back(descriptor);
}
for (directory_iterator itr(path_negative); itr!=directory_iterator(); ++itr)
{
filename = path_negative+itr->path().leaf().string();
//open the file
input = imread(filename, CV_LOAD_IMAGE_GRAYSCALE); //Load as grayscale
//detect feature points
detector.detect(input, keypoints);
//compute the descriptors for each keypoint
detector.compute(input, keypoints,descriptor);
//put the all feature descriptors in a single Mat object
featuresUnclustered.push_back(descriptor);
}
//Construct BOWKMeansTrainer
//the number of bags
int dictionarySize=10;
//define Term Criteria
TermCriteria tc(CV_TERMCRIT_EPS,100,0.001);
//retries number
int retries=1;
//necessary flags
int flags=KMEANS_PP_CENTERS;
//Create the BoW (or BoF) trainer
BOWKMeansTrainer bowTrainer(dictionarySize,tc,retries,flags);
//cluster the feature vectors
dictionary=bowTrainer.cluster(featuresUnclustered);
}
void labelSamples(string path,Mat & train,Mat & response,int label, Mat & dictionary)
{
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("FlannBased");
Ptr<DescriptorExtractor> extractor = new SiftDescriptorExtractor();
BOWImgDescriptorExtractor dextract( extractor, matcher );
SiftFeatureDetector detector(500);
for (directory_iterator itr(path); itr!=directory_iterator(); ++itr)
{
string filename = path+itr->path().leaf().string();
// set training data using BOWImgDescriptorExtractor
dextract.setVocabulary( dictionary );
std::vector<KeyPoint> keypoints;
Mat img = imread( filename, CV_LOAD_IMAGE_GRAYSCALE );
detector.detect( img, keypoints);
Mat desc;
dextract.compute( img, keypoints, desc );
if ( !desc.empty() )
{
train.push_back( desc ); // update training data
response.push_back( label ); // update response data
}
}
}
int main(int argc, char* argv[])
{
cout << "Starting Training" << std::endl;
if (argc != 3)
{
std::cout << "Error: please use the program as such: cartrainer path-to-positive-director path-to-negative-directory" << std::endl;
return 1;
}
std::string pos(argv[1]);
std::string neg(argv[2]);
if (!is_directory(pos))
{
std::cout << "Error: " << pos << "not a directory" << std::endl;
return 1;
}
if (!is_directory(neg))
{
std::cout << "Error: " << neg << "not a directory" << std::endl;
return 1;
}
Mat dictionary;
createDicitonary(dictionary,pos,neg);
cout << "Created dictionary" << std::endl;
Mat train,response;
labelSamples(pos,train,response,1,dictionary);
cout << "Labelled Positive Samples" << std::endl;
labelSamples(neg,train,response,-1,dictionary);
cout << "Labelled Negative Samples" << std::endl;
// svm parameters
CvTermCriteria criteria = cvTermCriteria(CV_TERMCRIT_EPS, 1000, FLT_EPSILON);
CvSVMParams svm_param = CvSVMParams( CvSVM::EPS_SVR, CvSVM::LINEAR, 10.0, 8.0, 1.0, 10.0, 0.5, 0.0001, NULL, criteria);
// train svm
cv::SVM svm;
svm.train(train, response,cv::Mat(),cv::Mat(),svm_param);
svm.save("svm-car-classifier.xml");
FileStorage fs("training_data.yml", FileStorage::WRITE);
fs << "dictionary" << dictionary;
fs << "train" << train;
fs << "response" << response;
fs.release();
return 0;
}
使用以下生成文件:
CC = g++
LINK = g++
INSTALL = install
CFLAGS = `pkg-config opencv --cflags` -I /usr/include/boost-1_46 -I.
LFLAGS = `pkg-config opencv --libs` -L /usr/lib -L /opt/ros/indigo/lib -lboost_system -lboost_filesystem -lopencv_features2d -lopencv_nonfree -lopencv_ocl
all: cartrainer
TrainClassifier.o: TrainClassifier.cpp
$(CC) $(CFLAGS) -o $@ -c $^
cartrainer: TrainClassifier.o
$(LINK) -o $@ $^ $(LFLAGS)
clean:
rm -f cartrainer *.o
install:
cp cartrainer ~/usr/bin/
通过以下方式:
make
我收到以下错误:
/usr/lib/libopencv_nonfree.so: undefined reference to `cv::ocl::integral(cv::ocl::oclMat const&, cv::ocl::oclMat&)'
collect2: error: ld returned 1 exit status
make: *** [cartrainer] Error 1
我尝试通过以下方式将其添加到我的 ldconfig 中:
/etc/ld.so.conf.d/opencv.conf 包含:
/usr/include
/usr/lib
之后我跑了:
sudo ldconfig
当我在 ROS 中使用以下 CMakesList.txt 编译类似的包时,也会发生同样的错误:
cmake_minimum_required(VERSION 2.8.3)
project(car_detector)
## Find catkin macros and libraries
## if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz)
## is used, also find other catkin packages
find_package(catkin REQUIRED COMPONENTS
roscpp
std_msgs
message_generation
camera_capture
cv_bridge
image_transport
image_util
lib_map_interface
)
find_package(OpenCV REQUIRED)
# Generate messages in the 'msg' folder
add_message_files(
FILES
CarDetection.msg
CarDetections.msg
)
generate_messages(DEPENDENCIES std_msgs geometry_msgs)
catkin_package(CATKIN_DEPENDS message_runtime std_msgs image_util lib_map_interface)
include_directories(${catkin_INCLUDE_DIRS}
${lib_map_interface_INCLUDE_DIRS})
add_executable(node_car_detector NodeCarDetector.cpp)
target_link_libraries(node_car_detector ${catkin_LIBRARIES} libimage_util)
add_dependencies(node_car_detector ${catkin_EXPORTED_TARGETS})
add_executable(node_car_classifier NodeCarClassifier.cpp)
target_link_libraries(node_car_classifier ${catkin_LIBRARIES} ${OpenCV_LIBS} libimage_util lib_map_interface)
add_dependencies(node_car_classifier ${catkin_EXPORTED_TARGETS})
我不确定还有什么可以尝试的,所以如果有人有任何想法,我会非常感激
非常感谢!