8

我想做的是测量眼镜框的厚度。我有测量框架轮廓厚度的想法(可能是更好的方法?)。到目前为止,我已经勾勒出眼镜的框架,但是线条不相交的地方存在间隙。我考虑过使用 HoughLinesP,但我不确定这是否是我需要的。

到目前为止,我已经执行了以下步骤:

  • 将图像转换为灰度
  • 在眼睛/眼镜区域周围创建 ROI
  • 模糊图像
  • 放大图像(这样做是为了去除任何薄框眼镜)
  • 进行 Canny 边缘检测
  • 找到轮廓

这些是结果:

到目前为止,这是我的代码:

//convert to grayscale
cv::Mat grayscaleImg;
cv::cvtColor( img, grayscaleImg, CV_BGR2GRAY );

//create ROI
cv::Mat eyeAreaROI(grayscaleImg, centreEyesRect);
cv::imshow("roi", eyeAreaROI);

//blur
cv::Mat blurredROI;
cv::blur(eyeAreaROI, blurredROI, Size(3,3));
cv::imshow("blurred", blurredROI);

//dilate thin lines
cv::Mat dilated_dst;
int dilate_elem = 0;
int dilate_size = 1;
int dilate_type = MORPH_RECT;

cv::Mat element = getStructuringElement(dilate_type, 
    cv::Size(2*dilate_size + 1, 2*dilate_size+1), 
    cv::Point(dilate_size, dilate_size));

cv::dilate(blurredROI, dilated_dst, element);
cv::imshow("dilate", dilated_dst);

//edge detection
int lowThreshold = 100;
int ratio = 3;
int kernel_size = 3;    

cv::Canny(dilated_dst, dilated_dst, lowThreshold, lowThreshold*ratio, kernel_size);

//create matrix of the same type and size as ROI
Mat dst;
dst.create(eyeAreaROI.size(), dilated_dst.type());
dst = Scalar::all(0);

dilated_dst.copyTo(dst, dilated_dst);
cv::imshow("edges", dst);

//join the lines and fill in
vector<Vec4i> hierarchy;
vector<vector<Point>> contours;

cv::findContours(dilated_dst, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE);
cv::imshow("contours", dilated_dst);

我不完全确定接下来的步骤是什么,或者如上所述,我是否应该使用 HoughLinesP 以及如何实现它。很感谢任何形式的帮助!

4

2 回答 2

4

我认为有两个主要问题。

  1. 分割眼镜框

  2. 找到分段框架的厚度

我现在将发布一种分割示例图像的眼镜的方法。也许这种方法也适用于不同的图像,但您可能必须调整参数,或者您可能能够使用主要思想。

主要思路是:首先,找到图像中最大的轮廓,应该是眼镜。其次,在之前找到的最大轮廓中找到两个最大的轮廓,应该是镜框内的眼镜!

我使用这张图片作为输入(这应该是你的模糊但不是放大的图像):

在此处输入图像描述

// this functions finds the biggest X contours. Probably there are faster ways, but it should work...
std::vector<std::vector<cv::Point>> findBiggestContours(std::vector<std::vector<cv::Point>> contours, int amount)
{
    std::vector<std::vector<cv::Point>> sortedContours;

    if(amount <= 0) amount = contours.size();
    if(amount > contours.size()) amount = contours.size();

    for(int chosen = 0; chosen < amount; )
    {
        double biggestContourArea = 0;
        int biggestContourID = -1;
        for(unsigned int i=0; i<contours.size() && contours.size(); ++i)
        {
            double tmpArea = cv::contourArea(contours[i]);
            if(tmpArea > biggestContourArea)
            {
                biggestContourArea = tmpArea;
                biggestContourID = i;
            }
        }

        if(biggestContourID >= 0)
        {
            //std::cout << "found area: " << biggestContourArea << std::endl;
            // found biggest contour
            // add contour to sorted contours vector:
            sortedContours.push_back(contours[biggestContourID]);
            chosen++;
            // remove biggest contour from original vector:
            contours[biggestContourID] = contours.back();
            contours.pop_back();
        }
        else
        {
            // should never happen except for broken contours with size 0?!?
            return sortedContours;
        }

    }

    return sortedContours;
}

int main()
{
    cv::Mat input = cv::imread("../Data/glass2.png", CV_LOAD_IMAGE_GRAYSCALE);
    cv::Mat inputColors = cv::imread("../Data/glass2.png"); // used for displaying later
    cv::imshow("input", input);

    //edge detection
    int lowThreshold = 100;
    int ratio = 3;
    int kernel_size = 3;    

    cv::Mat canny;
    cv::Canny(input, canny, lowThreshold, lowThreshold*ratio, kernel_size);
    cv::imshow("canny", canny);

    // close gaps with "close operator"
    cv::Mat mask = canny.clone();
    cv::dilate(mask,mask,cv::Mat());
    cv::dilate(mask,mask,cv::Mat());
    cv::dilate(mask,mask,cv::Mat());
    cv::erode(mask,mask,cv::Mat());
    cv::erode(mask,mask,cv::Mat());
    cv::erode(mask,mask,cv::Mat());

    cv::imshow("closed mask",mask);

    // extract outermost contour
    std::vector<cv::Vec4i> hierarchy;
    std::vector<std::vector<cv::Point>> contours;
    //cv::findContours(mask, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE);
    cv::findContours(mask, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);


    // find biggest contour which should be the outer contour of the frame
    std::vector<std::vector<cv::Point>> biggestContour;
    biggestContour = findBiggestContours(contours,1); // find the one biggest contour
    if(biggestContour.size() < 1)
    {
        std::cout << "Error: no outer frame of glasses found" << std::endl;
        return 1;
    }

    // draw contour on an empty image
    cv::Mat outerFrame = cv::Mat::zeros(mask.rows, mask.cols, CV_8UC1);
    cv::drawContours(outerFrame,biggestContour,0,cv::Scalar(255),-1);
    cv::imshow("outer frame border", outerFrame);

    // now find the glasses which should be the outer contours within the frame. therefore erode the outer border ;)
    cv::Mat glassesMask = outerFrame.clone();
    cv::erode(glassesMask,glassesMask, cv::Mat());
    cv::imshow("eroded outer",glassesMask);

    // after erosion if we dilate, it's an Open-Operator which can be used to clean the image.
    cv::Mat cleanedOuter;
    cv::dilate(glassesMask,cleanedOuter, cv::Mat());
    cv::imshow("cleaned outer",cleanedOuter);


    // use the outer frame mask as a mask for copying canny edges. The result should be the inner edges inside the frame only
    cv::Mat glassesInner;
    canny.copyTo(glassesInner, glassesMask);

    // there is small gap in the contour which unfortunately cant be closed with a closing operator...
    cv::dilate(glassesInner, glassesInner, cv::Mat());
    //cv::erode(glassesInner, glassesInner, cv::Mat());
    // this part was cheated... in fact we would like to erode directly after dilation to not modify the thickness but just close small gaps.
    cv::imshow("innerCanny", glassesInner);


    // extract contours from within the frame
    std::vector<cv::Vec4i> hierarchyInner;
    std::vector<std::vector<cv::Point>> contoursInner;
    //cv::findContours(glassesInner, contoursInner, hierarchyInner, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE);
    cv::findContours(glassesInner, contoursInner, hierarchyInner, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);

    // find the two biggest contours which should be the glasses within the frame
    std::vector<std::vector<cv::Point>> biggestInnerContours;
    biggestInnerContours = findBiggestContours(contoursInner,2); // find the one biggest contour
    if(biggestInnerContours.size() < 1)
    {
        std::cout << "Error: no inner frames of glasses found" << std::endl;
        return 1;
    }

    // draw the 2 biggest contours which should be the inner glasses
    cv::Mat innerGlasses = cv::Mat::zeros(mask.rows, mask.cols, CV_8UC1);
    for(unsigned int i=0; i<biggestInnerContours.size(); ++i)
        cv::drawContours(innerGlasses,biggestInnerContours,i,cv::Scalar(255),-1);

    cv::imshow("inner frame border", innerGlasses);

    // since we dilated earlier and didnt erode quite afterwards, we have to erode here... this is a bit of cheating :-(
    cv::erode(innerGlasses,innerGlasses,cv::Mat() );

    // remove the inner glasses from the frame mask
    cv::Mat fullGlassesMask = cleanedOuter - innerGlasses;
    cv::imshow("complete glasses mask", fullGlassesMask);

    // color code the result to get an impression of segmentation quality
    cv::Mat outputColors1 = inputColors.clone();
    cv::Mat outputColors2 = inputColors.clone();
    for(int y=0; y<fullGlassesMask.rows; ++y)
        for(int x=0; x<fullGlassesMask.cols; ++x)
        {
            if(!fullGlassesMask.at<unsigned char>(y,x))
                outputColors1.at<cv::Vec3b>(y,x)[1] = 255;
            else
                outputColors2.at<cv::Vec3b>(y,x)[1] = 255;

        }

    cv::imshow("output", outputColors1);

    /*
    cv::imwrite("../Data/Output/face_colored.png", outputColors1);
    cv::imwrite("../Data/Output/glasses_colored.png", outputColors2);
    cv::imwrite("../Data/Output/glasses_fullMask.png", fullGlassesMask);
    */

    cv::waitKey(-1);
    return 0;
}

我得到这个分割结果:

在此处输入图像描述

原始图像中的叠加层会给您质量印象:

在此处输入图像描述

和逆:

在此处输入图像描述

代码中有一些棘手的部分,尚未整理。我希望这是可以理解的。

下一步是计算分段帧的厚度。我的建议是计算反掩码的距离变换。从这里你会想要计算一个脊检测或骨架化掩码以找到脊。之后使用山脊距离的中值。

无论如何,我希望这篇文章可以帮助你一点,虽然它还不是一个解决方案。

于 2014-10-17T20:15:44.150 回答
1

根据照明,框架颜色等,这可能会或可能不会起作用,但是简单的颜色检测来分离框架怎么样?框架颜色通常会比人类皮肤深很多。你最终会得到一个二值图像(只有黑色和白色),通过计算黑色像素的数量(面积),你可以得到帧的面积。

另一种可能的方法是通过调整/扩张/侵蚀/两者来获得更好的边缘检测,直到获得更好的轮廓。您还需要将轮廓与镜片区分开来,然后应用 cvContourArea。

于 2014-10-17T08:16:58.293 回答