16

我有兴趣制作一个带有最小二乘回归线和将数据点连接到回归线的线段的图,如下图所示,称为垂直偏移: http: //mathworld.wolfram.com/LeastSquaresFitting.html (来自 MathWorld - Wolfram 网络资源:wolfram.com替代文字

我在这里完成了绘图和回归线:

## Dataset from http://www.apsnet.org/education/advancedplantpath/topics/RModules/doc1/04_Linear_regression.html

## Disease severity as a function of temperature

# Response variable, disease severity
diseasesev<-c(1.9,3.1,3.3,4.8,5.3,6.1,6.4,7.6,9.8,12.4)

# Predictor variable, (Centigrade)
temperature<-c(2,1,5,5,20,20,23,10,30,25)

## For convenience, the data may be formatted into a dataframe
severity <- as.data.frame(cbind(diseasesev,temperature))

## Fit a linear model for the data and summarize the output from function lm()
severity.lm <- lm(diseasesev~temperature,data=severity)

# Take a look at the data
plot(
 diseasesev~temperature,
        data=severity,
        xlab="Temperature",
        ylab="% Disease Severity",
        pch=16,
        pty="s",
        xlim=c(0,30),
        ylim=c(0,30)
)
abline(severity.lm,lty=1)
title(main="Graph of % Disease Severity vs Temperature")

我应该使用某种 for 循环和段http://www.iiap.res.in/astrostat/School07/R/html/graphics/html/segments.html来进行垂直偏移吗?有没有更有效的方法?如果可能,请提供一个例子。

4

1 回答 1

19

您首先需要计算出垂直线段底部的坐标,然后调用segments可以将坐标向量作为输入的函数(不需要循环)。

perp.segment.coord <- function(x0, y0, lm.mod){
 #finds endpoint for a perpendicular segment from the point (x0,y0) to the line
 # defined by lm.mod as y=a+b*x
  a <- coef(lm.mod)[1]  #intercept
  b <- coef(lm.mod)[2]  #slope
  x1 <- (x0+b*y0-a*b)/(1+b^2)
  y1 <- a + b*x1
  list(x0=x0, y0=y0, x1=x1, y1=y1)
}

现在只需调用段:

ss <- perp.segment.coord(temperature, diseasesev, severity.lm)
do.call(segments, ss)
#which is the same as:
segments(x0=ss$x0, x1=ss$x1, y0=ss$y0, y1=ss$y1)

请注意,除非您确保绘图的 x 单位和 y 单位具有相同的表观长度(等距比例),否则结果看起来不会垂直。您可以通过使用pty="s"来获得正方形图并将其设置xlimylim相同的范围。

于 2010-04-14T18:42:13.573 回答