在 .NET 中,该GetHashCode
方法在整个 .NET 基类库中的很多地方都使用。正确实施它对于在集合中快速查找项目或确定相等性时尤为重要。
是否有关于如何GetHashCode
为我的自定义类实现的标准算法或最佳实践,这样我就不会降低性能?
在 .NET 中,该GetHashCode
方法在整个 .NET 基类库中的很多地方都使用。正确实施它对于在集合中快速查找项目或确定相等性时尤为重要。
是否有关于如何GetHashCode
为我的自定义类实现的标准算法或最佳实践,这样我就不会降低性能?
我通常会使用类似于 Josh Bloch精彩的 Effective Java中给出的实现。它速度很快,并且创建了一个不太可能导致冲突的非常好的哈希。选择两个不同的素数,例如 17 和 23,然后:
public override int GetHashCode()
{
unchecked // Overflow is fine, just wrap
{
int hash = 17;
// Suitable nullity checks etc, of course :)
hash = hash * 23 + field1.GetHashCode();
hash = hash * 23 + field2.GetHashCode();
hash = hash * 23 + field3.GetHashCode();
return hash;
}
}
如评论中所述,您可能会发现最好选择一个大素数来乘以。显然 486187739 很好......虽然我看到的大多数小数字示例都倾向于使用素数,但至少有类似的算法经常使用非素数。例如,在稍后的不完全FNV示例中,我使用了显然工作良好的数字 - 但初始值不是质数。(虽然乘法常数是素数。我不知道这有多重要。)
这比XOR
ing 哈希码的常见做法更好,主要有两个原因。假设我们有一个包含两个int
字段的类型:
XorHash(x, x) == XorHash(y, y) == 0 for all x, y
XorHash(x, y) == XorHash(y, x) for all x, y
顺便说一句,早期的算法是 C# 编译器当前用于匿名类型的算法。
这个页面提供了很多选项。我认为在大多数情况下,上述内容“足够好”,并且非常容易记住和正确。FNV替代方案同样简单,但使用不同的常数,而XOR
不是ADD
作为组合操作。它看起来像下面的代码,但正常的 FNV 算法对单个字节进行操作,因此这需要修改为每个字节执行一次迭代,而不是每个 32 位哈希值。FNV 也是为可变长度的数据设计的,而我们在这里使用它的方式总是针对相同数量的字段值。对此答案的评论表明,此处的代码实际上并不像上面的添加方法那样有效(在测试的示例案例中)。
// Note: Not quite FNV!
public override int GetHashCode()
{
unchecked // Overflow is fine, just wrap
{
int hash = (int) 2166136261;
// Suitable nullity checks etc, of course :)
hash = (hash * 16777619) ^ field1.GetHashCode();
hash = (hash * 16777619) ^ field2.GetHashCode();
hash = (hash * 16777619) ^ field3.GetHashCode();
return hash;
}
}
请注意,要注意的一件事是,理想情况下,您应该防止在将您的平等敏感(因此哈希码敏感)状态添加到依赖于哈希码的集合后发生变化。
根据文档:
您可以为不可变引用类型覆盖 GetHashCode。一般来说,对于可变引用类型,只有在以下情况下才应该覆盖 GetHashCode:
- 您可以从不可变的字段计算哈希码;或者
- 您可以确保当对象包含在依赖于其哈希码的集合中时,可变对象的哈希码不会改变。
FNV文章的链接已损坏,但这是 Internet 档案中的副本:Eternally Confuzzled - The Art of Hashing
正如@cactuaroid 在评论中提到的,可以使用一个值元组。这节省了一些击键,更重要的是纯粹在堆栈上执行(无垃圾):
(PropA, PropB, PropC, PropD).GetHashCode();
(注意:使用匿名类型的原始技术似乎是在堆上创建一个对象,即垃圾,因为匿名类型是作为类实现的,尽管编译器可能会对此进行优化。对这些选项进行基准测试会很有趣,但是tuple 选项应该更好。)
Microsoft 已经提供了一个很好的通用 HashCode 生成器:只需将您的属性/字段值复制到匿名类型并对其进行哈希处理:
new { PropA, PropB, PropC, PropD }.GetHashCode();
这适用于任意数量的属性。它不使用拳击。它只是使用已经在匿名类型框架中实现的算法。
这是我的哈希码助手。
它的优点是它使用泛型类型参数,因此不会导致装箱:
public static class HashHelper
{
public static int GetHashCode<T1, T2>(T1 arg1, T2 arg2)
{
unchecked
{
return 31 * arg1.GetHashCode() + arg2.GetHashCode();
}
}
public static int GetHashCode<T1, T2, T3>(T1 arg1, T2 arg2, T3 arg3)
{
unchecked
{
int hash = arg1.GetHashCode();
hash = 31 * hash + arg2.GetHashCode();
return 31 * hash + arg3.GetHashCode();
}
}
public static int GetHashCode<T1, T2, T3, T4>(T1 arg1, T2 arg2, T3 arg3,
T4 arg4)
{
unchecked
{
int hash = arg1.GetHashCode();
hash = 31 * hash + arg2.GetHashCode();
hash = 31 * hash + arg3.GetHashCode();
return 31 * hash + arg4.GetHashCode();
}
}
public static int GetHashCode<T>(T[] list)
{
unchecked
{
int hash = 0;
foreach (var item in list)
{
hash = 31 * hash + item.GetHashCode();
}
return hash;
}
}
public static int GetHashCode<T>(IEnumerable<T> list)
{
unchecked
{
int hash = 0;
foreach (var item in list)
{
hash = 31 * hash + item.GetHashCode();
}
return hash;
}
}
/// <summary>
/// Gets a hashcode for a collection for that the order of items
/// does not matter.
/// So {1, 2, 3} and {3, 2, 1} will get same hash code.
/// </summary>
public static int GetHashCodeForOrderNoMatterCollection<T>(
IEnumerable<T> list)
{
unchecked
{
int hash = 0;
int count = 0;
foreach (var item in list)
{
hash += item.GetHashCode();
count++;
}
return 31 * hash + count.GetHashCode();
}
}
/// <summary>
/// Alternative way to get a hashcode is to use a fluent
/// interface like this:<br />
/// return 0.CombineHashCode(field1).CombineHashCode(field2).
/// CombineHashCode(field3);
/// </summary>
public static int CombineHashCode<T>(this int hashCode, T arg)
{
unchecked
{
return 31 * hashCode + arg.GetHashCode();
}
}
它还具有扩展方法来提供流畅的界面,因此您可以像这样使用它:
public override int GetHashCode()
{
return HashHelper.GetHashCode(Manufacturer, PartN, Quantity);
}
或像这样:
public override int GetHashCode()
{
return 0.CombineHashCode(Manufacturer)
.CombineHashCode(PartN)
.CombineHashCode(Quantity);
}
System.HashCode
如果您使用的是 .NET Standard 2.1 或更高版本,则可以使用System.HashCode结构。在早期的框架中,它可以从Microsoft.Bcl.HashCode
包中获得。有两种使用方法:
该Combine
方法可用于创建一个哈希码,最多给定八个对象。
public override int GetHashCode() => HashCode.Combine(this.object1, this.object2);
该Add
方法可帮助您处理集合:
public override int GetHashCode()
{
var hashCode = new HashCode();
hashCode.Add(this.object1);
foreach (var item in this.collection)
{
hashCode.Add(item);
}
return hashCode.ToHashCode();
}
一个替代方案System.HashCode
是超级容易使用,同时仍然很快。您可以阅读完整的博客文章“ GetHashCode Made Easy ”以获取更多详细信息和评论。
public class SuperHero
{
public int Age { get; set; }
public string Name { get; set; }
public List<string> Powers { get; set; }
public override int GetHashCode() =>
HashCode.Of(this.Name).And(this.Age).AndEach(this.Powers);
}
public struct HashCode : IEquatable<HashCode>
{
private const int EmptyCollectionPrimeNumber = 19;
private readonly int value;
private HashCode(int value) => this.value = value;
public static implicit operator int(HashCode hashCode) => hashCode.value;
public static bool operator ==(HashCode left, HashCode right) => left.Equals(right);
public static bool operator !=(HashCode left, HashCode right) => !(left == right);
public static HashCode Of<T>(T item) => new HashCode(GetHashCode(item));
public static HashCode OfEach<T>(IEnumerable<T> items) =>
items == null ? new HashCode(0) : new HashCode(GetHashCode(items, 0));
public HashCode And<T>(T item) =>
new HashCode(CombineHashCodes(this.value, GetHashCode(item)));
public HashCode AndEach<T>(IEnumerable<T> items)
{
if (items == null)
{
return new HashCode(this.value);
}
return new HashCode(GetHashCode(items, this.value));
}
public bool Equals(HashCode other) => this.value.Equals(other.value);
public override bool Equals(object obj)
{
if (obj is HashCode)
{
return this.Equals((HashCode)obj);
}
return false;
}
public override int GetHashCode() => this.value.GetHashCode();
private static int CombineHashCodes(int h1, int h2)
{
unchecked
{
// Code copied from System.Tuple a good way to combine hashes.
return ((h1 << 5) + h1) ^ h2;
}
}
private static int GetHashCode<T>(T item) => item?.GetHashCode() ?? 0;
private static int GetHashCode<T>(IEnumerable<T> items, int startHashCode)
{
var temp = startHashCode;
var enumerator = items.GetEnumerator();
if (enumerator.MoveNext())
{
temp = CombineHashCodes(temp, GetHashCode(enumerator.Current));
while (enumerator.MoveNext())
{
temp = CombineHashCodes(temp, GetHashCode(enumerator.Current));
}
}
else
{
temp = CombineHashCodes(temp, EmptyCollectionPrimeNumber);
}
return temp;
}
}
计算哈希码的算法需要很快。一个简单的算法通常会更快。不分配额外内存的一个也将减少垃圾收集的需求,这反过来也将提高性能。
特别是在 C# 哈希函数中,您经常使用unchecked
停止溢出检查的关键字来提高性能。
散列算法需要是确定性的,即给定相同的输入,它必须始终产生相同的输出。
计算哈希码的算法需要将哈希冲突保持在最低限度。哈希冲突是当GetHashCode
对两个不同对象的两次调用产生相同的哈希码时发生的情况。请注意,允许碰撞(有些人误解为不允许碰撞),但应将其保持在最低限度。
很多散列函数都包含像17
or这样的幻数23
。这些是特殊的素数,由于它们的数学特性,与使用非素数相比,它们有助于减少散列冲突。
一个好的散列函数应该在其输出范围内尽可能均匀地映射预期输入,即它应该基于其均匀分布的输入输出广泛的散列。它应该具有哈希一致性。
在 .NET Core 中,每次重新启动应用程序时,都会得到不同的哈希码。这是一项防止拒绝服务攻击 (DoS) 的安全功能。对于 .NET Framework,您应该通过添加以下 App.config 文件来启用此功能:
<?xml version ="1.0"?>
<configuration>
<runtime>
<UseRandomizedStringHashAlgorithm enabled="1" />
</runtime>
</configuration>
由于这个特性,哈希码不应该在创建它们的应用程序域之外使用,它们不应该被用作集合中的关键字段并且它们不应该被持久化。
在此处阅读有关此内容的更多信息。
该算法不必是密码散列函数。这意味着它不必满足以下条件:
我在 Helper 库中有一个 Hashing 类,我将其用于此目的。
/// <summary>
/// This is a simple hashing function from Robert Sedgwicks Hashing in C book.
/// Also, some simple optimizations to the algorithm in order to speed up
/// its hashing process have been added. from: www.partow.net
/// </summary>
/// <param name="input">array of objects, parameters combination that you need
/// to get a unique hash code for them</param>
/// <returns>Hash code</returns>
public static int RSHash(params object[] input)
{
const int b = 378551;
int a = 63689;
int hash = 0;
// If it overflows then just wrap around
unchecked
{
for (int i = 0; i < input.Length; i++)
{
if (input[i] != null)
{
hash = hash * a + input[i].GetHashCode();
a = a * b;
}
}
}
return hash;
}
然后,您可以简单地将其用作:
public override int GetHashCode()
{
return Hashing.RSHash(_field1, _field2, _field3);
}
我没有评估它的性能,所以欢迎任何反馈。
这是我使用Jon Skeet 实现的助手类。
public static class HashCode
{
public const int Start = 17;
public static int Hash<T>(this int hash, T obj)
{
var h = EqualityComparer<T>.Default.GetHashCode(obj);
return unchecked((hash * 31) + h);
}
}
用法:
public override int GetHashCode()
{
return HashCode.Start
.Hash(_field1)
.Hash(_field2)
.Hash(_field3);
}
如果您想避免为 System.Int32 编写扩展方法:
public readonly struct HashCode
{
private readonly int _value;
public HashCode(int value) => _value = value;
public static HashCode Start { get; } = new HashCode(17);
public static implicit operator int(HashCode hash) => hash._value;
public HashCode Hash<T>(T obj)
{
var h = EqualityComparer<T>.Default.GetHashCode(obj);
return unchecked(new HashCode((_value * 31) + h));
}
public override int GetHashCode() => _value;
}
它仍然避免了任何堆分配,并且使用方式完全相同:
public override int GetHashCode()
{
// This time `HashCode.Start` is not an `Int32`, it's a `HashCode` instance.
// And the result is implicitly converted to `Int32`.
return HashCode.Start
.Hash(_field1)
.Hash(_field2)
.Hash(_field3);
}
编辑(2018 年 5 月):EqualityComparer<T>.Default
getter 现在是 JIT 内在函数——Stephen Toub 在这篇博文中提到了拉取请求。
在 Equals() 比较多个字段的大多数情况下,您的 GetHash() 是否在一个字段或多个字段上散列并不重要。您只需要确保计算哈希真的很便宜(请不要分配)和快速(没有繁重的计算,当然也没有数据库连接)并提供良好的分布。
繁重的工作应该是 Equals() 方法的一部分;散列应该是一个非常便宜的操作,可以在尽可能少的项目上调用 Equals()。
最后一个提示:不要依赖 GetHashCode() 在多个应用程序运行中保持稳定。许多 .Net 类型不保证其哈希码在重新启动后保持不变,因此您应该只将 GetHashCode() 的值用于内存数据结构。
直到最近,我的回答都非常接近 Jon Skeet 的回答。然而,我最近开始了一个使用二次幂哈希表的项目,即内部表大小为 8、16、32 等的哈希表。支持质数大小是有充分理由的,但是也是二次方大小的一些优势。
它非常糟糕。因此,经过一些实验和研究后,我开始使用以下内容重新散列我的哈希:
public static int ReHash(int source)
{
unchecked
{
ulong c = 0xDEADBEEFDEADBEEF + (ulong)source;
ulong d = 0xE2ADBEEFDEADBEEF ^ c;
ulong a = d += c = c << 15 | c >> -15;
ulong b = a += d = d << 52 | d >> -52;
c ^= b += a = a << 26 | a >> -26;
d ^= c += b = b << 51 | b >> -51;
a ^= d += c = c << 28 | c >> -28;
b ^= a += d = d << 9 | d >> -9;
c ^= b += a = a << 47 | a >> -47;
d ^= c += b << 54 | b >> -54;
a ^= d += c << 32 | c >> 32;
a += d << 25 | d >> -25;
return (int)(a >> 1);
}
}
然后我的二次幂哈希表不再糟糕了。
但这让我感到不安,因为上述内容不应该起作用。或者更准确地说,它不应该起作用,除非原件GetHashCode()
以非常特殊的方式很差。
重新混合一个哈希码并不能改进一个很好的哈希码,因为唯一可能的效果是我们引入了更多的冲突。
重新混合哈希码并不能改善糟糕的哈希码,因为唯一可能的影响是我们将值 53 上的大量冲突更改为大量值 18,3487,291。
重新混合散列码只能改进散列码,该散列码在避免其范围内的绝对冲突(2 32 个可能值)方面至少做得相当好,但在对散列表中的实际使用进行取模时在避免冲突方面表现不佳。虽然 2 的幂表的更简单的模数使这一点更加明显,但它也对更常见的素数表产生了负面影响,这并不那么明显(重新散列的额外工作将超过好处,但好处仍然存在)。
编辑:我也在使用开放寻址,这也会增加对碰撞的敏感性,也许比它是二次幂的事实更重要。
好吧,令人不安的是.NETstring.GetHashCode()
中的实现(或在此处研究)可以通过这种方式改进多少(由于更少的冲突,测试运行速度提高了大约 20-30 倍),更令人不安的是我自己的哈希码有多少可以改进(远不止这些)。
我过去编写的所有 GetHashCode() 实现,并且确实用作该站点上答案的基础,都比我通过的要糟糕得多。很多时候它对于大部分用途来说“足够好”,但我想要更好的东西。
所以我把那个项目放在一边(无论如何它是一个宠物项目),并开始研究如何在 .NET 中快速生成一个好的、分布良好的哈希码。
最后,我决定将SpookyHash移植到 .NET。实际上,上面的代码是使用 SpookyHash 从 32 位输入生成 32 位输出的快速路径版本。
现在,SpookyHash 不是一个快速记住代码的好方法。我的端口更是如此,因为我手动内联了很多以提高速度*。但这就是代码重用的目的。
然后我把那个项目放在一边,因为就像原来的项目产生了如何产生更好的哈希码的问题一样,这个项目产生了如何产生更好的 .NET memcpy 的问题。
然后我回来了,并产生了很多重载,以便轻松地将几乎所有本机类型(decimal
†除外)提供给哈希码。
它的速度很快,Bob Jenkins 应该得到大部分的赞誉,因为我从中移植的他的原始代码仍然更快,尤其是在算法优化的 64 位机器上‡。
完整的代码可以在https://bitbucket.org/JonHanna/spookilysharp/src看到,但考虑到上面的代码是它的简化版本。
但是,由于它现在已经编写好了,因此可以更轻松地使用它:
public override int GetHashCode()
{
var hash = new SpookyHash();
hash.Update(field1);
hash.Update(field2);
hash.Update(field3);
return hash.Final().GetHashCode();
}
它还需要种子值,因此如果您需要处理不受信任的输入并希望防止 Hash DoS 攻击,您可以根据正常运行时间或类似设置设置种子,并使攻击者无法预测结果:
private static long hashSeed0 = Environment.TickCount;
private static long hashSeed1 = DateTime.Now.Ticks;
public override int GetHashCode()
{
//produce different hashes ever time this application is restarted
//but remain consistent in each run, so attackers have a harder time
//DoSing the hash tables.
var hash = new SpookyHash(hashSeed0, hashSeed1);
hash.Update(field1);
hash.Update(field2);
hash.Update(field3);
return hash.Final().GetHashCode();
}
*其中一个很大的惊喜是手动内联旋转方法返回(x << n) | (x >> -n)
了改进的东西。我本来可以肯定抖动会为我内联,但分析显示并非如此。
†<code>decimal 虽然来自 C#,但从 .NET 的角度来看并不是原生的。它的问题在于它自己GetHashCode()
将精度视为重要,而它自己Equals()
则没有。两者都是有效的选择,但不能像那样混合。在实现您自己的版本时,您需要选择做一个或另一个,但我不知道您想要哪个。
‡通过比较。如果在字符串上使用,64 位上的 SpookyHash 比 32 位上的速度要快得多string.GetHashCode()
,32 位上的速度略快string.GetHashCode()
于 64 位上的速度,这比 32 位上的 SpookyHash 快得多,尽管仍然足够快,可以作为一个合理的选择。
从https://github.com/dotnet/coreclr/pull/14863开始,有一种生成哈希码的新方法非常简单!写吧
public override int GetHashCode()
=> HashCode.Combine(field1, field2, field3);
这将生成高质量的哈希码,而您不必担心实现细节。
这个不错:
/// <summary>
/// Helper class for generating hash codes suitable
/// for use in hashing algorithms and data structures like a hash table.
/// </summary>
public static class HashCodeHelper
{
private static int GetHashCodeInternal(int key1, int key2)
{
unchecked
{
var num = 0x7e53a269;
num = (-1521134295 * num) + key1;
num += (num << 10);
num ^= (num >> 6);
num = ((-1521134295 * num) + key2);
num += (num << 10);
num ^= (num >> 6);
return num;
}
}
/// <summary>
/// Returns a hash code for the specified objects
/// </summary>
/// <param name="arr">An array of objects used for generating the
/// hash code.</param>
/// <returns>
/// A hash code, suitable for use in hashing algorithms and data
/// structures like a hash table.
/// </returns>
public static int GetHashCode(params object[] arr)
{
int hash = 0;
foreach (var item in arr)
hash = GetHashCodeInternal(hash, item.GetHashCode());
return hash;
}
/// <summary>
/// Returns a hash code for the specified objects
/// </summary>
/// <param name="obj1">The first object.</param>
/// <param name="obj2">The second object.</param>
/// <param name="obj3">The third object.</param>
/// <param name="obj4">The fourth object.</param>
/// <returns>
/// A hash code, suitable for use in hashing algorithms and
/// data structures like a hash table.
/// </returns>
public static int GetHashCode<T1, T2, T3, T4>(T1 obj1, T2 obj2, T3 obj3,
T4 obj4)
{
return GetHashCode(obj1, GetHashCode(obj2, obj3, obj4));
}
/// <summary>
/// Returns a hash code for the specified objects
/// </summary>
/// <param name="obj1">The first object.</param>
/// <param name="obj2">The second object.</param>
/// <param name="obj3">The third object.</param>
/// <returns>
/// A hash code, suitable for use in hashing algorithms and data
/// structures like a hash table.
/// </returns>
public static int GetHashCode<T1, T2, T3>(T1 obj1, T2 obj2, T3 obj3)
{
return GetHashCode(obj1, GetHashCode(obj2, obj3));
}
/// <summary>
/// Returns a hash code for the specified objects
/// </summary>
/// <param name="obj1">The first object.</param>
/// <param name="obj2">The second object.</param>
/// <returns>
/// A hash code, suitable for use in hashing algorithms and data
/// structures like a hash table.
/// </returns>
public static int GetHashCode<T1, T2>(T1 obj1, T2 obj2)
{
return GetHashCodeInternal(obj1.GetHashCode(), obj2.GetHashCode());
}
}
以下是如何使用它:
private struct Key
{
private Type _type;
private string _field;
public Type Type { get { return _type; } }
public string Field { get { return _field; } }
public Key(Type type, string field)
{
_type = type;
_field = field;
}
public override int GetHashCode()
{
return HashCodeHelper.GetHashCode(_field, _type);
}
public override bool Equals(object obj)
{
if (!(obj is Key))
return false;
var tf = (Key)obj;
return tf._field.Equals(_field) && tf._type.Equals(_type);
}
}
这是Jon Skeet 在上面发布的算法的另一个流畅实现,但不包括分配或装箱操作:
public static class Hash
{
public const int Base = 17;
public static int HashObject(this int hash, object obj)
{
unchecked { return hash * 23 + (obj == null ? 0 : obj.GetHashCode()); }
}
public static int HashValue<T>(this int hash, T value)
where T : struct
{
unchecked { return hash * 23 + value.GetHashCode(); }
}
}
用法:
public class MyType<T>
{
public string Name { get; set; }
public string Description { get; set; }
public int Value { get; set; }
public IEnumerable<T> Children { get; set; }
public override int GetHashCode()
{
return Hash.Base
.HashObject(this.Name)
.HashObject(this.Description)
.HashValue(this.Value)
.HashObject(this.Children);
}
}
由于泛型类型约束,编译器将确保HashValue
不使用类调用。但是没有编译器支持,HashObject
因为添加通用参数也会添加装箱操作。
这是我的简单方法。我为此使用了经典的构建器模式。它是类型安全的(无装箱/拆箱)并且与 .NET 2.0 兼容(无扩展方法等)。
它是这样使用的:
public override int GetHashCode()
{
HashBuilder b = new HashBuilder();
b.AddItems(this.member1, this.member2, this.member3);
return b.Result;
}
这是实际的构建器类:
internal class HashBuilder
{
private const int Prime1 = 17;
private const int Prime2 = 23;
private int result = Prime1;
public HashBuilder()
{
}
public HashBuilder(int startHash)
{
this.result = startHash;
}
public int Result
{
get
{
return this.result;
}
}
public void AddItem<T>(T item)
{
unchecked
{
this.result = this.result * Prime2 + item.GetHashCode();
}
}
public void AddItems<T1, T2>(T1 item1, T2 item2)
{
this.AddItem(item1);
this.AddItem(item2);
}
public void AddItems<T1, T2, T3>(T1 item1, T2 item2, T3 item3)
{
this.AddItem(item1);
this.AddItem(item2);
this.AddItem(item3);
}
public void AddItems<T1, T2, T3, T4>(T1 item1, T2 item2, T3 item3,
T4 item4)
{
this.AddItem(item1);
this.AddItem(item2);
this.AddItem(item3);
this.AddItem(item4);
}
public void AddItems<T1, T2, T3, T4, T5>(T1 item1, T2 item2, T3 item3,
T4 item4, T5 item5)
{
this.AddItem(item1);
this.AddItem(item2);
this.AddItem(item3);
this.AddItem(item4);
this.AddItem(item5);
}
public void AddItems<T>(params T[] items)
{
foreach (T item in items)
{
this.AddItem(item);
}
}
}
如果我们的属性不超过 8 个(希望如此),这是另一种选择。
ValueTuple
是一个结构,似乎有一个可靠的GetHashCode
实现。
这意味着我们可以简单地这样做:
// Yay, no allocations and no custom implementations!
public override int GetHashCode() => (this.PropA, this.PropB).GetHashCode();
让我们看一下 .NET Core 当前对ValueTuple
's的实现GetHashCode
。
这是来自ValueTuple
:
internal static int CombineHashCodes(int h1, int h2)
{
return HashHelpers.Combine(HashHelpers.Combine(HashHelpers.RandomSeed, h1), h2);
}
internal static int CombineHashCodes(int h1, int h2, int h3)
{
return HashHelpers.Combine(CombineHashCodes(h1, h2), h3);
}
这是来自HashHelper
:
public static readonly int RandomSeed = Guid.NewGuid().GetHashCode();
public static int Combine(int h1, int h2)
{
unchecked
{
// RyuJIT optimizes this to use the ROL instruction
// Related GitHub pull request: dotnet/coreclr#1830
uint rol5 = ((uint)h1 << 5) | ((uint)h1 >> 27);
return ((int)rol5 + h1) ^ h2;
}
}
用英语:
如果能更多地了解这个 ROL-5 哈希码算法的属性,那就太好了。
ValueTuple
遗憾的是,我们自己的延迟GetHashCode
可能没有我们希望和期望的那么快。相关讨论中的此评论说明直接调用HashHelpers.Combine
的性能更高。另一方面,那个是内部的,所以我们必须复制代码,牺牲我们在这里获得的大部分内容。此外,我们将负责记住首先Combine
使用随机种子。我不知道如果我们跳过这一步会有什么后果。
ReSharper用户可以使用ReSharper -> Edit -> Generate Code -> Equality Members
.
// ReSharper's GetHashCode looks like this
public override int GetHashCode() {
unchecked {
int hashCode = Id;
hashCode = (hashCode * 397) ^ IntMember;
hashCode = (hashCode * 397) ^ OtherIntMember;
hashCode = (hashCode * 397) ^ (RefMember != null ? RefMember.GetHashCode() : 0);
// ...
return hashCode;
}
}
我的大部分工作都是通过数据库连接完成的,这意味着我的类都具有来自数据库的唯一标识符。我总是使用数据库中的 ID 来生成哈希码。
// Unique ID from database
private int _id;
...
{
return _id.GetHashCode();
}
与 nightcoder 的解决方案非常相似,只是如果您愿意,它更容易提高质数。
PS:这是你在嘴里吐一点的时候之一,知道这可以重构为一种具有 9 个默认值的方法,但它会更慢,所以你只需闭上眼睛,试着忘记它。
/// <summary>
/// Try not to look at the source code. It works. Just rely on it.
/// </summary>
public static class HashHelper
{
private const int PrimeOne = 17;
private const int PrimeTwo = 23;
public static int GetHashCode<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>(T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5, T6 arg6, T7 arg7, T8 arg8, T9 arg9, T10 arg10)
{
unchecked
{
int hash = PrimeOne;
hash = hash * PrimeTwo + arg1.GetHashCode();
hash = hash * PrimeTwo + arg2.GetHashCode();
hash = hash * PrimeTwo + arg3.GetHashCode();
hash = hash * PrimeTwo + arg4.GetHashCode();
hash = hash * PrimeTwo + arg5.GetHashCode();
hash = hash * PrimeTwo + arg6.GetHashCode();
hash = hash * PrimeTwo + arg7.GetHashCode();
hash = hash * PrimeTwo + arg8.GetHashCode();
hash = hash * PrimeTwo + arg9.GetHashCode();
hash = hash * PrimeTwo + arg10.GetHashCode();
return hash;
}
}
public static int GetHashCode<T1, T2, T3, T4, T5, T6, T7, T8, T9>(T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5, T6 arg6, T7 arg7, T8 arg8, T9 arg9)
{
unchecked
{
int hash = PrimeOne;
hash = hash * PrimeTwo + arg1.GetHashCode();
hash = hash * PrimeTwo + arg2.GetHashCode();
hash = hash * PrimeTwo + arg3.GetHashCode();
hash = hash * PrimeTwo + arg4.GetHashCode();
hash = hash * PrimeTwo + arg5.GetHashCode();
hash = hash * PrimeTwo + arg6.GetHashCode();
hash = hash * PrimeTwo + arg7.GetHashCode();
hash = hash * PrimeTwo + arg8.GetHashCode();
hash = hash * PrimeTwo + arg9.GetHashCode();
return hash;
}
}
public static int GetHashCode<T1, T2, T3, T4, T5, T6, T7, T8>(T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5, T6 arg6, T7 arg7, T8 arg8)
{
unchecked
{
int hash = PrimeOne;
hash = hash * PrimeTwo + arg1.GetHashCode();
hash = hash * PrimeTwo + arg2.GetHashCode();
hash = hash * PrimeTwo + arg3.GetHashCode();
hash = hash * PrimeTwo + arg4.GetHashCode();
hash = hash * PrimeTwo + arg5.GetHashCode();
hash = hash * PrimeTwo + arg6.GetHashCode();
hash = hash * PrimeTwo + arg7.GetHashCode();
hash = hash * PrimeTwo + arg8.GetHashCode();
return hash;
}
}
public static int GetHashCode<T1, T2, T3, T4, T5, T6, T7>(T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5, T6 arg6, T7 arg7)
{
unchecked
{
int hash = PrimeOne;
hash = hash * PrimeTwo + arg1.GetHashCode();
hash = hash * PrimeTwo + arg2.GetHashCode();
hash = hash * PrimeTwo + arg3.GetHashCode();
hash = hash * PrimeTwo + arg4.GetHashCode();
hash = hash * PrimeTwo + arg5.GetHashCode();
hash = hash * PrimeTwo + arg6.GetHashCode();
hash = hash * PrimeTwo + arg7.GetHashCode();
return hash;
}
}
public static int GetHashCode<T1, T2, T3, T4, T5, T6>(T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5, T6 arg6)
{
unchecked
{
int hash = PrimeOne;
hash = hash * PrimeTwo + arg1.GetHashCode();
hash = hash * PrimeTwo + arg2.GetHashCode();
hash = hash * PrimeTwo + arg3.GetHashCode();
hash = hash * PrimeTwo + arg4.GetHashCode();
hash = hash * PrimeTwo + arg5.GetHashCode();
hash = hash * PrimeTwo + arg6.GetHashCode();
return hash;
}
}
public static int GetHashCode<T1, T2, T3, T4, T5>(T1 arg1, T2 arg2, T3 arg3, T4 arg4, T5 arg5)
{
unchecked
{
int hash = PrimeOne;
hash = hash * PrimeTwo + arg1.GetHashCode();
hash = hash * PrimeTwo + arg2.GetHashCode();
hash = hash * PrimeTwo + arg3.GetHashCode();
hash = hash * PrimeTwo + arg4.GetHashCode();
hash = hash * PrimeTwo + arg5.GetHashCode();
return hash;
}
}
public static int GetHashCode<T1, T2, T3, T4>(T1 arg1, T2 arg2, T3 arg3, T4 arg4)
{
unchecked
{
int hash = PrimeOne;
hash = hash * PrimeTwo + arg1.GetHashCode();
hash = hash * PrimeTwo + arg2.GetHashCode();
hash = hash * PrimeTwo + arg3.GetHashCode();
hash = hash * PrimeTwo + arg4.GetHashCode();
return hash;
}
}
public static int GetHashCode<T1, T2, T3>(T1 arg1, T2 arg2, T3 arg3)
{
unchecked
{
int hash = PrimeOne;
hash = hash * PrimeTwo + arg1.GetHashCode();
hash = hash * PrimeTwo + arg2.GetHashCode();
hash = hash * PrimeTwo + arg3.GetHashCode();
return hash;
}
}
public static int GetHashCode<T1, T2>(T1 arg1, T2 arg2)
{
unchecked
{
int hash = PrimeOne;
hash = hash * PrimeTwo + arg1.GetHashCode();
hash = hash * PrimeTwo + arg2.GetHashCode();
return hash;
}
}
}
微软领导了几种散列方式......
//for classes that contain a single int value
return this.value;
//for classes that contain multiple int value
return x ^ y;
//for classes that contain single number bigger than int
return ((int)value ^ (int)(value >> 32));
//for classes that contain class instance fields which inherit from object
return obj1.GetHashCode();
//for classes that contain multiple class instance fields which inherit from object
return obj1.GetHashCode() ^ obj2.GetHashCode() ^ obj3.GetHashCode();
我可以猜测对于多个大 int 你可以使用这个:
int a=((int)value1 ^ (int)(value1 >> 32));
int b=((int)value2 ^ (int)(value2 >> 32));
int c=((int)value3 ^ (int)(value3 >> 32));
return a ^ b ^ c;
多类型也是如此:首先将所有转换为int
使用,GetHashCode()
然后 int 值将被异或,结果是您的哈希。
对于那些使用hash作为ID(我的意思是唯一值)的人来说,hash自然被限制在一个数字内,我认为散列算法是5个字节,至少是MD5。
您可以将多个值转换为一个散列值,其中一些是相同的,因此不要将其用作标识符。(也许有一天我会使用你的组件)
使用上面选择的实现,我遇到了浮点数和小数的问题。
该测试失败(浮点数;即使我将 2 个值切换为负数,哈希也是相同的):
var obj1 = new { A = 100m, B = 100m, C = 100m, D = 100m};
var obj2 = new { A = 100m, B = 100m, C = -100m, D = -100m};
var hash1 = ComputeHash(obj1.A, obj1.B, obj1.C, obj1.D);
var hash2 = ComputeHash(obj2.A, obj2.B, obj2.C, obj2.D);
Assert.IsFalse(hash1 == hash2, string.Format("Hashcode values should be different hash1:{0} hash2:{1}",hash1,hash2));
但是这个测试通过了(带整数):
var obj1 = new { A = 100m, B = 100m, C = 100, D = 100};
var obj2 = new { A = 100m, B = 100m, C = -100, D = -100};
var hash1 = ComputeHash(obj1.A, obj1.B, obj1.C, obj1.D);
var hash2 = ComputeHash(obj2.A, obj2.B, obj2.C, obj2.D);
Assert.IsFalse(hash1 == hash2, string.Format("Hashcode values should be different hash1:{0} hash2:{1}",hash1,hash2));
我将实现更改为不对原始类型使用 GetHashCode,它似乎效果更好
private static int InternalComputeHash(params object[] obj)
{
unchecked
{
var result = (int)SEED_VALUE_PRIME;
for (uint i = 0; i < obj.Length; i++)
{
var currval = result;
var nextval = DetermineNextValue(obj[i]);
result = (result * MULTIPLIER_VALUE_PRIME) + nextval;
}
return result;
}
}
private static int DetermineNextValue(object value)
{
unchecked
{
int hashCode;
if (value is short
|| value is int
|| value is byte
|| value is sbyte
|| value is uint
|| value is ushort
|| value is ulong
|| value is long
|| value is float
|| value is double
|| value is decimal)
{
return Convert.ToInt32(value);
}
else
{
return value != null ? value.GetHashCode() : 0;
}
}
}
这是一个实现 Josh Bloch 实现的静态助手类;并提供显式重载以“防止”装箱,并专门为长原语实现散列。
您可以传递与您的 equals 实现匹配的字符串比较。
因为 Hash 输出始终是一个 int,所以您可以只链接 Hash 调用。
using System;
using System.Collections;
using System.Collections.Generic;
using System.Reflection;
using System.Runtime.CompilerServices;
namespace Sc.Util.System
{
/// <summary>
/// Static methods that allow easy implementation of hashCode. Example usage:
/// <code>
/// public override int GetHashCode()
/// => HashCodeHelper.Seed
/// .Hash(primitiveField)
/// .Hsh(objectField)
/// .Hash(iEnumerableField);
/// </code>
/// </summary>
public static class HashCodeHelper
{
/// <summary>
/// An initial value for a hashCode, to which is added contributions from fields.
/// Using a non-zero value decreases collisions of hashCode values.
/// </summary>
public const int Seed = 23;
private const int oddPrimeNumber = 37;
/// <summary>
/// Rotates the seed against a prime number.
/// </summary>
/// <param name="aSeed">The hash's first term.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static int rotateFirstTerm(int aSeed)
{
unchecked {
return HashCodeHelper.oddPrimeNumber * aSeed;
}
}
/// <summary>
/// Contributes a boolean to the developing HashCode seed.
/// </summary>
/// <param name="aSeed">The developing HashCode value or seed.</param>
/// <param name="aBoolean">The value to contribute.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Hash(this int aSeed, bool aBoolean)
{
unchecked {
return HashCodeHelper.rotateFirstTerm(aSeed)
+ (aBoolean
? 1
: 0);
}
}
/// <summary>
/// Contributes a char to the developing HashCode seed.
/// </summary>
/// <param name="aSeed">The developing HashCode value or seed.</param>
/// <param name="aChar">The value to contribute.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Hash(this int aSeed, char aChar)
{
unchecked {
return HashCodeHelper.rotateFirstTerm(aSeed)
+ aChar;
}
}
/// <summary>
/// Contributes an int to the developing HashCode seed.
/// Note that byte and short are handled by this method, through implicit conversion.
/// </summary>
/// <param name="aSeed">The developing HashCode value or seed.</param>
/// <param name="aInt">The value to contribute.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Hash(this int aSeed, int aInt)
{
unchecked {
return HashCodeHelper.rotateFirstTerm(aSeed)
+ aInt;
}
}
/// <summary>
/// Contributes a long to the developing HashCode seed.
/// </summary>
/// <param name="aSeed">The developing HashCode value or seed.</param>
/// <param name="aLong">The value to contribute.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Hash(this int aSeed, long aLong)
{
unchecked {
return HashCodeHelper.rotateFirstTerm(aSeed)
+ (int)(aLong ^ (aLong >> 32));
}
}
/// <summary>
/// Contributes a float to the developing HashCode seed.
/// </summary>
/// <param name="aSeed">The developing HashCode value or seed.</param>
/// <param name="aFloat">The value to contribute.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Hash(this int aSeed, float aFloat)
{
unchecked {
return HashCodeHelper.rotateFirstTerm(aSeed)
+ Convert.ToInt32(aFloat);
}
}
/// <summary>
/// Contributes a double to the developing HashCode seed.
/// </summary>
/// <param name="aSeed">The developing HashCode value or seed.</param>
/// <param name="aDouble">The value to contribute.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Hash(this int aSeed, double aDouble)
=> aSeed.Hash(Convert.ToInt64(aDouble));
/// <summary>
/// Contributes a string to the developing HashCode seed.
/// </summary>
/// <param name="aSeed">The developing HashCode value or seed.</param>
/// <param name="aString">The value to contribute.</param>
/// <param name="stringComparison">Optional comparison that creates the hash.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Hash(
this int aSeed,
string aString,
StringComparison stringComparison = StringComparison.Ordinal)
{
if (aString == null)
return aSeed.Hash(0);
switch (stringComparison) {
case StringComparison.CurrentCulture :
return StringComparer.CurrentCulture.GetHashCode(aString);
case StringComparison.CurrentCultureIgnoreCase :
return StringComparer.CurrentCultureIgnoreCase.GetHashCode(aString);
case StringComparison.InvariantCulture :
return StringComparer.InvariantCulture.GetHashCode(aString);
case StringComparison.InvariantCultureIgnoreCase :
return StringComparer.InvariantCultureIgnoreCase.GetHashCode(aString);
case StringComparison.OrdinalIgnoreCase :
return StringComparer.OrdinalIgnoreCase.GetHashCode(aString);
default :
return StringComparer.Ordinal.GetHashCode(aString);
}
}
/// <summary>
/// Contributes a possibly-null array to the developing HashCode seed.
/// Each element may be a primitive, a reference, or a possibly-null array.
/// </summary>
/// <param name="aSeed">The developing HashCode value or seed.</param>
/// <param name="aArray">CAN be null.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Hash(this int aSeed, IEnumerable aArray)
{
if (aArray == null)
return aSeed.Hash(0);
int countPlusOne = 1; // So it differs from null
foreach (object item in aArray) {
++countPlusOne;
if (item is IEnumerable arrayItem) {
if (!object.ReferenceEquals(aArray, arrayItem))
aSeed = aSeed.Hash(arrayItem); // recursive call!
} else
aSeed = aSeed.Hash(item);
}
return aSeed.Hash(countPlusOne);
}
/// <summary>
/// Contributes a possibly-null array to the developing HashCode seed.
/// You must provide the hash function for each element.
/// </summary>
/// <param name="aSeed">The developing HashCode value or seed.</param>
/// <param name="aArray">CAN be null.</param>
/// <param name="hashElement">Required: yields the hash for each element
/// in <paramref name="aArray"/>.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Hash<T>(this int aSeed, IEnumerable<T> aArray, Func<T, int> hashElement)
{
if (aArray == null)
return aSeed.Hash(0);
int countPlusOne = 1; // So it differs from null
foreach (T item in aArray) {
++countPlusOne;
aSeed = aSeed.Hash(hashElement(item));
}
return aSeed.Hash(countPlusOne);
}
/// <summary>
/// Contributes a possibly-null object to the developing HashCode seed.
/// </summary>
/// <param name="aSeed">The developing HashCode value or seed.</param>
/// <param name="aObject">CAN be null.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int Hash(this int aSeed, object aObject)
{
switch (aObject) {
case null :
return aSeed.Hash(0);
case bool b :
return aSeed.Hash(b);
case char c :
return aSeed.Hash(c);
case int i :
return aSeed.Hash(i);
case long l :
return aSeed.Hash(l);
case float f :
return aSeed.Hash(f);
case double d :
return aSeed.Hash(d);
case string s :
return aSeed.Hash(s);
case IEnumerable iEnumerable :
return aSeed.Hash(iEnumerable);
}
return aSeed.Hash(aObject.GetHashCode());
}
/// <summary>
/// This utility method uses reflection to iterate all specified properties that are readable
/// on the given object, excluding any property names given in the params arguments, and
/// generates a hashcode.
/// </summary>
/// <param name="aSeed">The developing hash code, or the seed: if you have no seed, use
/// the <see cref="Seed"/>.</param>
/// <param name="aObject">CAN be null.</param>
/// <param name="propertySelector"><see cref="BindingFlags"/> to select the properties to hash.</param>
/// <param name="ignorePropertyNames">Optional.</param>
/// <returns>A hash from the properties contributed to <c>aSeed</c>.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int HashAllProperties(
this int aSeed,
object aObject,
BindingFlags propertySelector
= BindingFlags.Instance
| BindingFlags.Public
| BindingFlags.GetProperty,
params string[] ignorePropertyNames)
{
if (aObject == null)
return aSeed.Hash(0);
if ((ignorePropertyNames != null)
&& (ignorePropertyNames.Length != 0)) {
foreach (PropertyInfo propertyInfo in aObject.GetType()
.GetProperties(propertySelector)) {
if (!propertyInfo.CanRead
|| (Array.IndexOf(ignorePropertyNames, propertyInfo.Name) >= 0))
continue;
aSeed = aSeed.Hash(propertyInfo.GetValue(aObject));
}
} else {
foreach (PropertyInfo propertyInfo in aObject.GetType()
.GetProperties(propertySelector)) {
if (propertyInfo.CanRead)
aSeed = aSeed.Hash(propertyInfo.GetValue(aObject));
}
}
return aSeed;
}
/// <summary>
/// NOTICE: this method is provided to contribute a <see cref="KeyValuePair{TKey,TValue}"/> to
/// the developing HashCode seed; by hashing the key and the value independently. HOWEVER,
/// this method has a different name since it will not be automatically invoked by
/// <see cref="Hash(int,object)"/>, <see cref="Hash(int,IEnumerable)"/>,
/// or <see cref="HashAllProperties"/> --- you MUST NOT mix this method with those unless
/// you are sure that no KeyValuePair instances will be passed to those methods; or otherwise
/// the generated hash code will not be consistent. This method itself ALSO will not invoke
/// this method on the Key or Value here if that itself is a KeyValuePair.
/// </summary>
/// <param name="aSeed">The developing HashCode value or seed.</param>
/// <param name="keyValuePair">The value to contribute.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int HashKeyAndValue<TKey, TValue>(this int aSeed, KeyValuePair<TKey, TValue> keyValuePair)
=> aSeed.Hash(keyValuePair.Key)
.Hash(keyValuePair.Value);
/// <summary>
/// NOTICE: this method is provided to contribute a collection of <see cref="KeyValuePair{TKey,TValue}"/>
/// to the developing HashCode seed; by hashing the key and the value independently. HOWEVER,
/// this method has a different name since it will not be automatically invoked by
/// <see cref="Hash(int,object)"/>, <see cref="Hash(int,IEnumerable)"/>,
/// or <see cref="HashAllProperties"/> --- you MUST NOT mix this method with those unless
/// you are sure that no KeyValuePair instances will be passed to those methods; or otherwise
/// the generated hash code will not be consistent. This method itself ALSO will not invoke
/// this method on a Key or Value here if that itself is a KeyValuePair or an Enumerable of
/// KeyValuePair.
/// </summary>
/// <param name="aSeed">The developing HashCode value or seed.</param>
/// <param name="keyValuePairs">The values to contribute.</param>
/// <returns>The new hash code.</returns>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static int HashKeysAndValues<TKey, TValue>(
this int aSeed,
IEnumerable<KeyValuePair<TKey, TValue>> keyValuePairs)
{
if (keyValuePairs == null)
return aSeed.Hash(null);
foreach (KeyValuePair<TKey, TValue> keyValuePair in keyValuePairs) {
aSeed = aSeed.HashKeyAndValue(keyValuePair);
}
return aSeed;
}
}
}
如果你想HashCode
从netstandard2.1
public static class HashCode
{
public static int Combine(params object[] instances)
{
int hash = 17;
foreach (var i in instances)
{
hash = unchecked((hash * 31) + (i?.GetHashCode() ?? 0));
}
return hash;
}
}
注意:如果和 一起使用struct
,会因为装箱而分配内存
可以尝试采用 C++ Boost 库中的方法。像这样的东西:
class HashUtil
{
public static int HashCombine(int seed, int other)
{
unchecked
{
return other + 0x9e3779b9 + (seed << 6) + (seed >> 2);
}
}
}
进而:
class MyClass
{
private string _field1;
private int _field2;
private AnotherClass _field3;
private YetAnotherClass _field4;
public override int GetHashCode()
{
int result = HashUtil.HashCombine(_field1.GetHashCode(), _field2);
result = HashUtil.HashCombine(result, _field3.GetHashCode());
return HashUtil.HashCombine(result, _field4.GetHashCode());
}
}
我想将我的最新发现添加到我经常回来的这个线程中。
我当前的视觉工作室/项目设置提供了自动将元组重构为结构的功能。这将生成一个 GetHashCode 函数,如下所示:
public override int GetHashCode()
{
int hashCode = -2088324004;
hashCode = hashCode * -1521134295 + AuftragGesperrt.GetHashCode();
hashCode = hashCode * -1521134295 + Auftrag_gesperrt_von.GetHashCode();
hashCode = hashCode * -1521134295 + Auftrag_gesperrt_am.GetHashCode();
return hashCode;
}