我正在测试 ipython 的一些功能,我认为我做错了什么。
我正在测试 3 种不同的方法来执行一些数学运算。
- 第一次使用
@parallel.parallel(view=dview, block=True)
和功能map
- 第二次使用单核函数(python普通函数)
- 3、使用客户端负载均衡功能
我有这个代码:
from IPython import parallel
import numpy as np
import multiprocessing as mp
import time
rc = parallel.Client(block=True)
dview = rc[:]
lbview = rc.load_balanced_view()
@parallel.require(np)
def suma_pll(a, b):
return a + b
@parallel.require(np)
def producto_pll(a, b):
return a * b
def suma(a, b):
return a + b
def producto(a, b):
return a * b
@parallel.parallel(view=dview, block=True)
@parallel.require(np)
@parallel.require(suma_pll)
@parallel.require(producto_pll)
def a_calc_pll(a, b):
result = []
for i, v in enumerate(a):
result.append(
producto_pll(suma_pll(a[i], a[i]), suma_pll(b[i], b[i]))//100
)
return result
@parallel.require(suma)
@parallel.require(producto)
def a_calc_remote(a, b):
result = []
for i, v in enumerate(a):
result.append(
producto(suma(a[i], a[i]), suma(b[i], b[i]))//100
)
return result
def a_calc(a, b):
return producto(suma(a, a), suma(b, b))//100
def main_pll(a, b):
return a_calc_pll.map(a, b)
def main_lb(a, b):
c = lbview.map(a_calc_remote, a, b, block=True)
return c
def main(a, b):
c = []
for i in range(len(a)):
c += [a_calc(a[i], b[i]).tolist()]
return c
if __name__ == '__main__':
a, b = [], []
for i in range(1, 1000):
a.append(np.array(range(i+00, i+10)))
b.append(np.array(range(i+10, i+20)))
t = time.time()
c1 = main_pll(a, b)
t1 = time.time()-t
t = time.time()
c2 = main(a, b)
t2 = time.time()-t
t = time.time()
c3 = main_lb(a, b)
t3 = time.time()-t
print(str(c1) == str(c2))
print(str(c3) == str(c2))
print('%f secs (multicore)' % t1)
print('%f secs (singlecore)' % t2)
print('%f secs (multicore_load_balance)' % t3)
我的结果是:
True
True
0.040741 secs (multicore)
0.004004 secs (singlecore)
1.286592 secs (multicore_load_balance)
为什么我的多核程序比单核程序慢?这种方法有什么问题?我能做些什么来修复它?
一些信息:python3.4.1、ipython 2.2.0、numpy 1.9.0、ipcluster 使用 LocalEngineSetLauncher 启动 8 个引擎