8

我用 SMT 的短语提取算法编写了以下代码。

GitHub

# -*- coding: utf-8 -*-

def phrase_extraction(srctext, trgtext, alignment):
    """
    Phrase extraction algorithm. 
    """
    def extract(f_start, f_end, e_start, e_end):
        phrases = set()
        # return { } if f end == 0
        if f_end == 0:
            return
        # for all (e,f) ∈ A do
        for e,f in alignment:
            # return { } if e < e start or e > e end
            if e < e_start or e > e_end:        
                return

        fs = f_start
        # repeat-
        while True:
            fe = f_end
            # repeat-
            while True:
                # add phrase pair ( e start .. e end , f s .. f e ) to set E
                trg_phrase = " ".join(trgtext[i] for i in range(fs,fe))
                src_phrase = " ".join(srctext[i] for i in range(e_start,e_end))
                phrases.add("\t".join([src_phrase, trg_phrase]))
                fe+=1 # fe++
                # -until fe aligned
                if fe in f_aligned or fe > trglen:
                    break
            fs-=1 # fe--
            # -until fs aligned
            if fs in f_aligned or fs < 0:
                break
        return phrases

    # Calculate no. of tokens in source and target texts.
    srctext = srctext.split()
    trgtext = trgtext.split()
    srclen = len(srctext)
    trglen = len(trgtext)
    # Keeps an index of which source/target words are aligned.
    e_aligned = [i for i,_ in alignment]
    f_aligned = [j for _,j in alignment] 

    bp = set() # set of phrase pairs BP
    # for e start = 1 ... length(e) do
    for e_start in range(srclen):
        # for e end = e start ... length(e) do       
        for e_end in range(e_start, srclen):
            # // find the minimally matching foreign phrase
            # (f start , f end ) = ( length(f), 0 )
            f_start, f_end = trglen, 0
            # for all (e,f) ∈ A do
            for e,f in alignment:
                # if e start ≤ e ≤ e end then
                if e_start <= e <= e_end:
                    f_start = min(f, f_start)
                    f_end = max(f, f_end)
            # add extract (f start , f end , e start , e end ) to set BP
            phrases = extract(f_start, f_end, e_start, e_end)
            if phrases:
                bp.update(phrases)
    return bp

srctext = "michael assumes that he will stay in the house"
trgtext = "michael geht davon aus , dass er im haus bleibt"
alignment = [(0,0), (1,1), (1,2), (1,3), (2,5), (3,6), (4,9), (5,9), (6,7), (7,7), (8,8)]

phrases = phrase_extraction(srctext, trgtext, alignment)

for i in phrases:
    print i

Philip Koehn 的Statistical Machine Translation一书第 133 页中的短语提取算法是这样的:

在此处输入图像描述

所需的输出应该是:

在此处输入图像描述

但是,使用我的代码,我只能得到这些输出:

迈克尔认为他会留在-迈克尔盖特达文澳大利亚达斯尔伊姆豪斯

迈克尔认为他会留在-迈克尔盖特达文澳大利亚达斯尔伊姆豪斯布莱布特

有人发现我的实施有什么问题吗?

该代码确实提取了短语,但它不是完整的所需输出,如上面的翻译表所示:

在此处输入图像描述

4

1 回答 1

8

所以我看过这个问题,现在可以重现所需的输出。结果发现有很多问题:

  • 算法并不完全。在本书的在线版本(2012 年第 3 次印刷)中,提取功能的第 4 行已更新。(可能有勘误表)
  • 该算法假定索引从 1 开始直到并包括结尾。
  • Python 假定基于 0 的索引直到但不包括结尾。
  • 特别是这会影响一些对 range 的调用和一些比较的停止值。
  • 套装中的物品已经过修改,以便更容易地复制所需的输出。

示例输出(匹配 19 个短语,其中一些匹配重复 5 次,共提取 24 个):

$ python2.7 phrase_extract_new.py 
( 1) (0, 1) michael — michael
( 2) (0, 2) michael assumes — michael geht davon aus ; michael geht davon aus ,
( 3) (0, 3) michael assumes that — michael geht davon aus , dass
( 4) (0, 4) michael assumes that he — michael geht davon aus , dass er
( 5) (0, 9) michael assumes that he will stay in the house — michael geht davon aus , dass er im haus bleibt
( 6) (1, 2) assumes — geht davon aus ; geht davon aus ,
( 7) (1, 3) assumes that — geht davon aus , dass
( 8) (1, 4) assumes that he — geht davon aus , dass er
( 9) (1, 9) assumes that he will stay in the house — geht davon aus , dass er im haus bleibt
(10) (2, 3) that — dass ; , dass
(11) (2, 4) that he — dass er ; , dass er
(12) (2, 9) that he will stay in the house — dass er im haus bleibt ; , dass er im haus bleibt
(13) (3, 4) he — er
(14) (3, 9) he will stay in the house — er im haus bleibt
(15) (4, 6) will stay — bleibt
(16) (4, 9) will stay in the house — im haus bleibt
(17) (6, 8) in the — im
(18) (6, 9) in the house — im haus
(19) (8, 9) house — haus
$ python2.7 phrase_extract_new.py | grep -c ';'
5

下面是对算法的建议解释。该算法需要进行相当多的重构,但在此之前需要使用不同的示例进行更多测试。重现书中的例子只是一个开始:

# -*- coding: utf-8 -*-

def phrase_extraction(srctext, trgtext, alignment):
    """
    Phrase extraction algorithm.
    """
    def extract(f_start, f_end, e_start, e_end):
        if f_end < 0:  # 0-based indexing.
            return {}
        # Check if alignement points are consistent.
        for e,f in alignment:
            if ((f_start <= f <= f_end) and
               (e < e_start or e > e_end)):
                return {}

        # Add phrase pairs (incl. additional unaligned f)
        # Remark:  how to interpret "additional unaligned f"?
        phrases = set()
        fs = f_start
        # repeat-
        while True:
            fe = f_end
            # repeat-
            while True:
                # add phrase pair ([e_start, e_end], [fs, fe]) to set E
                # Need to +1 in range  to include the end-point.
                src_phrase = " ".join(srctext[i] for i in range(e_start,e_end+1))
                trg_phrase = " ".join(trgtext[i] for i in range(fs,fe+1))
                # Include more data for later ordering.
                phrases.add(((e_start, e_end+1), src_phrase, trg_phrase))
                fe += 1 # fe++
                # -until fe aligned or out-of-bounds
                if fe in f_aligned or fe == trglen:
                    break
            fs -=1  # fe--
            # -until fs aligned or out-of- bounds
            if fs in f_aligned or fs < 0:
                break
        return phrases

    # Calculate no. of tokens in source and target texts.
    srctext = srctext.split()   # e
    trgtext = trgtext.split()   # f
    srclen = len(srctext)       # len(e)
    trglen = len(trgtext)       # len(f)
    # Keeps an index of which source/target words are aligned.
    e_aligned = [i for i,_ in alignment]
    f_aligned = [j for _,j in alignment]

    bp = set() # set of phrase pairs BP
    # for e start = 1 ... length(e) do
    # Index e_start from 0 to len(e) - 1
    for e_start in range(srclen):
        # for e end = e start ... length(e) do
        # Index e_end from e_start to len(e) - 1
        for e_end in range(e_start, srclen):
            # // find the minimally matching foreign phrase
            # (f start , f end ) = ( length(f), 0 )
            # f_start ∈ [0, len(f) - 1]; f_end ∈ [0, len(f) - 1]
            f_start, f_end = trglen-1 , -1  #  0-based indexing
            # for all (e,f) ∈ A do
            for e,f in alignment:
                # if e start ≤ e ≤ e end then
                if e_start <= e <= e_end:
                    f_start = min(f, f_start)
                    f_end = max(f, f_end)
            # add extract (f start , f end , e start , e end ) to set BP
            phrases = extract(f_start, f_end, e_start, e_end)
            if phrases:
                bp.update(phrases)
    return bp

# Refer to match matrix.
#             0      1      2   3  4     5   6   7    8
srctext = "michael assumes that he will stay in the house"
#             0      1    2    3  4  5   6  7   8     9
trgtext = "michael geht davon aus , dass er im haus bleibt"
alignment = [(0,0), (1,1), (1,2), (1,3), (2,5), (3,6), (4,9), (5,9), (6,7), (7,7), (8,8)]

phrases = phrase_extraction(srctext, trgtext, alignment)

# Keep track of translations of each phrase in srctext and its
# alignement using a dictionary with keys as phrases and values being
# a list [e_alignement pair, [f_extractions, ...] ]
dlist = {}
for p, a, b in phrases:
    if a in dlist:
        dlist[a][1].append(b)
    else:
        dlist[a] = [p, [b]]

# Sort the list of translations based on their length.  Shorter phrases first.
for v in dlist.values():
    v[1].sort(key=lambda x: len(x))


# Function to help sort according to book example.
def ordering(p):
    k,v = p
    return v[0]
#
for i, p in enumerate(sorted(dlist.items(), key = ordering), 1):
    k, v = p
    print "({0:2}) {1} {2} — {3}".format( i, v[0], k, " ; ".join(v[1]))

准备输出的最后部分可能会得到改进……算法代码当然可以变得更加 Pythonic。

于 2014-08-04T22:54:27.990 回答