@Yvon is absolutely right with his comment about symmetry. Your input signal looks symmetrical, but it isn't because symmetry is related to origin 0.
Using linspace in Matlab for constructing signals is mostly a bad choice.
Trying to repair the results with fftshift is a bad idea too.
Use instead:
k = 2*(0:N-1)/N - 1;
and you will get the result you expect.
However the imaginary part of the transformed values will not be perfectly zero.
There is some numerical noise.
>> max(abs(imag(Vf5)))
ans =
2.5535e-15
Answer to Yvon's question:
Why? >> N = 1+2^4 N = 17 >> x=linspace(-1,1,N) x = -1.0000 -0.8750 -0.7500 -0.6250 -0.5000 -0.3750 -0.2500 -0.1250 0 0.1250 0.2500 0.3750 0.5000 0.6250 0.7500 0.8750 1.0000 >> y=2*(0:N-1)/N-1 y = -1.0000 -0.8824 -0.7647 -0.6471 -0.5294 -0.4118 -0.2941 -0.1765 -0.0588 0.0588 0.1765 0.2941 0.4118 0.5294 0.6471 0.7647 0.8824 – Yvon 1
Your example is not a symmetric (even) function, but an antisymmetric (odd) function. However, this makes no difference.
For a antisymmetric function of length N the following statement is true:
f[i] == -f[-i] == -f[N-i]
The index i runs from 0 to N-1.
Let us see was happens with i=2. Remember, count starts with 0 and ends with 16.
x[2] = -0.75
-x[N-2] == -x[17-2] == -x[15] = (-1) 0.875 = -0.875
x[2] != -x[N-2]
y[2] = -0.7647
-y[N-2] == -y[15] = (-1) 0.7647
y[2] == y[N-2]
The problem is, that the origin of Matlab vectors start at 1.
Modulo (periodic) vectors start with origin 0.
This difference leads to many misunderstandings.
Another way of explanation why linspace(-1,+1,N) is not correct:
Imagine you have a vector which holds a single period of a periodic function,
for instance a Cosinus function. This single period is one of a infinite number of periods.
The first value of your Cosinus vector must not be same as the last value of your vector.
However,that is exactly what linspace(-1,+1,N) does.
Doing so, results in a sequence where the last value of period 1 is the same value as the first sample of the following period 2. That is not what you want.
To avoid this mistake use t = 2*(0:N-1)/N - 1. The distance t[i+1]-t[i] is 2/N and the last value has to be t[N-1] = 1 - 2/N and not 1.
Answer to Yvon's second comment
Whatever you put in an input vector of a DFT/FFT, by theory it is interpreted as a periodic function.
But that is not the point.
DFT performs an integration.
fft(m) = Sum_(k=0)^(N-1) (x(k) exp(-i 2 pi m k/N )
The first value x(k=0) describes the amplitude of the first integration interval of length 1/N. The second value x(k=1) describes the amplitude of the second integration interval of length 1/N. And so on.
The very last integration interval of the symmetric function ends with same value as the first sample. This means, the starting point of the last integration interval is k=N-1 = 1-1/N. Your input vector holds the starting points of the integration intervals.
Therefore, the last point of symmetry k=N is a point of the function, but it is not a starting point of an integration interval and so it is not a member of the input vector.