6

我正在尝试在 python 中从http://jheusser.github.io/2013/09/08/hawkes.html复制工作,但数据不同。我编写了代码来模拟泊松过程以及他们描述的霍克斯过程。

为了做霍克斯模型 MLE,我将对数似然函数定义为

def loglikelihood(params, data):
    (mu, alpha, beta) = params
    tlist = np.array(data)
    r = np.zeros(len(tlist))
    for i in xrange(1,len(tlist)):
        r[i] = math.exp(-beta*(tlist[i]-tlist[i-1]))*(1+r[i-1])
    loglik  = -tlist[-1]*mu
    loglik = loglik+alpha/beta*sum(np.exp(-beta*(tlist[-1]-tlist))-1)
    loglik = loglik+np.sum(np.log(mu+alpha*r))
    return -loglik

使用一些虚拟数据,我们可以计算 Hawkes 过程的 MLE

atimes=[58.98353497,   59.28420225,   59.71571013,   60.06750179,   61.24794134,
61.70692463,   61.73611983,   62.28593814,   62.51691723,   63.17370423
,63.20125152,   65.34092403,  214.24934446,  217.0390236,   312.18830525,
319.38385604,  320.31758188,  323.50201334,  323.76801537,  323.9417007]

res = minimize(loglikelihood, (0.01, 0.1,0.1),method='Nelder-Mead',args = (atimes,))
print res

但是,我不知道如何在 python 中执行以下操作。

  1. 我怎样才能做相当于 evalCIF 以获得类似的拟合与经验强度图?
  2. 如何计算 Hawkes 模型的残差以制作与他们拥有的 QQ 图相当的值。他们说他们使用了一个名为 ptproc 的 R 包,但我找不到对应的 python。
4

1 回答 1

14

好的,所以您可能希望做的第一件事是绘制数据。为了简单起见,我复制了这个图,因为它只发生了 8 个事件,因此很容易看到系统的行为。以下代码:

import numpy as np
import math, matplotlib
import matplotlib.pyplot
import matplotlib.lines

mu = 0.1 # Parameter values as found in the article http://jheusser.github.io/2013/09/08/hawkes.html Hawkes Process section.
alpha = 1.0
beta = 0.5

EventTimes = np.array([0.7, 1.2, 2.0, 3.8, 7.1, 8.2, 8.9, 9.0])

" Compute conditional intensities for all times using the Hawkes process. "
timesOfInterest = np.linspace(0.0, 10.0, 100) # Times where the intensity will be sampled.
conditionalIntensities = [] # Conditional intensity for every epoch of interest.
for t in timesOfInterest:
     conditionalIntensities.append( mu + np.array( [alpha*math.exp(-beta*(t-ti)) if t > ti else 0.0 for ti in EventTimes] ).sum() ) # Find the contributions of all preceding events to the overall chance of another one occurring. All events that occur after t have no contribution.

" Plot the conditional intensity time history. "
fig = matplotlib.pyplot.figure()
ax = fig.gca()

labelsFontSize = 16
ticksFontSize = 14

fig.suptitle(r"$Conditional\ intensity\ VS\ time$", fontsize=20)
ax.grid(True)
ax.set_xlabel(r'$Time$',fontsize=labelsFontSize)
ax.set_ylabel(r'$\lambda$',fontsize=labelsFontSize)
matplotlib.rc('xtick', labelsize=ticksFontSize) 
matplotlib.rc('ytick', labelsize=ticksFontSize)

eventsScatter = ax.scatter(EventTimes,np.ones(len(EventTimes))) # Just to indicate where the events took place.

ax.plot(timesOfInterest, conditionalIntensities, color='red', linestyle='solid', marker=None, markerfacecolor='blue', markersize=12)
 fittedPlot = matplotlib.lines.Line2D([],[],color='red', linestyle='solid', marker=None,  markerfacecolor='blue', markersize=12)

fig.legend([fittedPlot, eventsScatter], [r'$Conditional\ intensity\ computed\ from\    events$', r'$Events$'])
matplotlib.pyplot.show()

即使我有些武断地选择了事件时期,也非常准确地再现了这个数字: 简单的霍克斯过程

通过对数据进行分箱并将每个分箱视为一个事件,这也可以应用于 5000 笔交易的示例数据集。但是,现在发生的情况是,每个事件的权重略有不同,因为每个仓中发生的交易数量不同。在将比特币贸易到达拟合到霍克斯过程部分的文章中也提到了这一点,并提出了解决此问题的建议方法:这包含在以下代码中:The only difference to the original dataset is that I added a random millisecond timestamp to all trades that share a timestamp with another trade. This is required as the model requires to distinguish every trade (i.e. every trade must have a unique timestamp).

import numpy as np
import math, matplotlib, pandas
import scipy.optimize
import matplotlib.pyplot
import matplotlib.lines

" Read example trades' data. "
all_trades = pandas.read_csv('all_trades.csv', parse_dates=[0], index_col=0) # All trades' data.
all_counts = pandas.DataFrame({'counts': np.ones(len(all_trades))}, index=all_trades.index) # Only the count of the trades is really important.
empirical_1min = all_counts.resample('1min', how='sum') # Bin the data so find the number of trades in 1 minute intervals.

baseEventTimes = np.array( range(len(empirical_1min.values)), dtype=np.float64) # Dummy times when the events take place, don't care too much about actual epochs where the bins are placed - this could be scaled to days since epoch, second since epoch and any other measure of time.
eventTimes = [] # With the event batches split into separate events.
for i in range(len(empirical_1min.values)): # Deal with many events occurring at the same time - need to distinguish between them by splitting each batch of events into distinct events taking place at almost the same time.
    if not np.isnan(empirical_1min.values[i]):
        for j in range(empirical_1min.values[i]):
            eventTimes.append(baseEventTimes[i]+0.000001*(j+1)) # For every event that occurrs at this epoch enter a dummy event very close to it in time that will increase the conditional intensity.

eventTimes = np.array( eventTimes, dtype=np.float64 ) # Change to array for ease of operations.

" Find a fit for alpha, beta, and mu that minimises loglikelihood for the input data. "
#res = scipy.optimize.minimize(loglikelihood, (0.01, 0.1,0.1), method='Nelder-Mead', args = (eventTimes,))
#(mu, alpha, beta) =  res.x
mu = 0.07 # Parameter values as found in the article.
alpha = 1.18
beta = 1.79

" Compute conditional intensities for all epochs using the Hawkes process - add more points to see how the effect of individual events decays over time. "
conditionalIntensitiesPlotting = [] # Conditional intensity for every epoch of interest.
 timesOfInterest = np.linspace(eventTimes.min(), eventTimes.max(), eventTimes.size*10) # Times where the intensity will be sampled. Sample at much higher frequency than the events occur at.
for t in timesOfInterest:
    conditionalIntensitiesPlotting.append( mu + np.array( [alpha*math.exp(-beta*(t-ti))   if t > ti else 0.0 for ti in eventTimes] ).sum() ) # Find the contributions of all preceding events to the overall chance of another one occurring. All events that occur after time of interest t have no contribution.

" Compute conditional intensities at the same epochs as the empirical data are known. "
 conditionalIntensities=[] # This will be used in the QQ plot later, has to have the same size as the empirical data.
for t in np.linspace(eventTimes.min(), eventTimes.max(), eventTimes.size):
    conditionalIntensities.append( mu + np.array( [alpha*math.exp(-beta*(t-ti)) if t > ti else 0.0 for ti in eventTimes] ).sum() ) # Use eventTimes here as well to feel the influence of all the events that happen at the same time.

" Plot the empirical and fitted datasets. "
fig = matplotlib.pyplot.figure()
ax = fig.gca()

labelsFontSize = 16
ticksFontSize = 14

fig.suptitle(r"$Conditional\ intensity\ VS\ time$", fontsize=20)
ax.grid(True)
ax.set_xlabel(r'$Time$',fontsize=labelsFontSize)
ax.set_ylabel(r'$\lambda$',fontsize=labelsFontSize)
matplotlib.rc('xtick', labelsize=ticksFontSize) 
matplotlib.rc('ytick', labelsize=ticksFontSize)

# Plot the empirical binned data.
ax.plot(baseEventTimes,empirical_1min.values, color='blue', linestyle='solid',   marker=None, markerfacecolor='blue', markersize=12)
empiricalPlot = matplotlib.lines.Line2D([],[],color='blue', linestyle='solid', marker=None, markerfacecolor='blue', markersize=12)

# And the fit obtained using the Hawkes function.
ax.plot(timesOfInterest, conditionalIntensitiesPlotting, color='red', linestyle='solid',   marker=None, markerfacecolor='blue', markersize=12)
fittedPlot = matplotlib.lines.Line2D([],[],color='red', linestyle='solid', marker=None, markerfacecolor='blue', markersize=12)

fig.legend([fittedPlot, empiricalPlot], [r'$Fitted\ data$', r'$Empirical\ data$'])
matplotlib.pyplot.show()

这会生成以下拟合图: 使用真实交易数据的霍克斯流程 看起来都不错,但是,当您查看细节时,您会发现通过简单地取交易数量的一个向量并减去拟合的向量来计算残差是行不通的,因为它们具有不同的长度: 使用真实交易数据的霍克斯流程关闭 但是,可以在与经验数据记录时相同的时期提取强度,然后计算残差。这使您能够找到经验数据和拟合数据的分位数并将它们相互绘制,从而生成 QQ 图:

""" GENERATE THE QQ PLOT. """
" Process the data and compute the quantiles. "
orderStatistics=[]; orderStatistics2=[];
for i in range( empirical_1min.values.size ): # Make sure all the NANs are filtered out and both arrays have the same size.
    if not np.isnan( empirical_1min.values[i] ):
        orderStatistics.append(empirical_1min.values[i])
        orderStatistics2.append(conditionalIntensities[i])
orderStatistics = np.array(orderStatistics); orderStatistics2 = np.array(orderStatistics2);

orderStatistics.sort(axis=0) # Need to sort data in ascending order to make a QQ plot.    orderStatistics is a column vector.
 orderStatistics2.sort()

 smapleQuantiles=np.zeros( orderStatistics.size ) # Quantiles of the empirical data.
 smapleQuantiles2=np.zeros( orderStatistics2.size ) # Quantiles of the data fitted using the Hawkes process.
for i in range( orderStatistics.size ):
    temp = int( 100*(i-0.5)/float(smapleQuantiles.size) ) # (i-0.5)/float(smapleQuantiles.size) th quantile. COnvert to % as expected by the numpy  function.
    if temp<0.0:
        temp=0.0 # Avoid having -ve percentiles.
    smapleQuantiles[i] = np.percentile(orderStatistics, temp)
    smapleQuantiles2[i] = np.percentile(orderStatistics2, temp)

" Make the quantile plot of empirical data first. "
fig2 = matplotlib.pyplot.figure()
ax2 = fig2.gca(aspect="equal")

fig2.suptitle(r"$Quantile\ plot$", fontsize=20)
ax2.grid(True)
ax2.set_xlabel(r'$Sample\ fraction\ (\%)$',fontsize=labelsFontSize)
ax2.set_ylabel(r'$Observations$',fontsize=labelsFontSize)
matplotlib.rc('xtick', labelsize=ticksFontSize) 
matplotlib.rc('ytick', labelsize=ticksFontSize)

distScatter = ax2.scatter(smapleQuantiles, orderStatistics, c='blue', marker='o') # If these are close to the straight line with slope line these points come from a normal distribution.

ax2.plot(smapleQuantiles, smapleQuantiles, color='red', linestyle='solid', marker=None, markerfacecolor='red', markersize=12)
normalDistPlot = matplotlib.lines.Line2D([],[],color='red', linestyle='solid', marker=None, markerfacecolor='red', markersize=12)

fig2.legend([normalDistPlot, distScatter], [r'$Normal\ distribution$', r'$Empirical\ data$'])
 matplotlib.pyplot.show()

" Make a QQ plot. "
fig3 = matplotlib.pyplot.figure()
ax3 = fig3.gca(aspect="equal")

fig3.suptitle(r"$Quantile\ -\ Quantile\ plot$", fontsize=20)
ax3.grid(True)
ax3.set_xlabel(r'$Empirical\ data$',fontsize=labelsFontSize)
ax3.set_ylabel(r'$Data\ fitted\ with\ Hawkes\ distribution$',fontsize=labelsFontSize)
matplotlib.rc('xtick', labelsize=ticksFontSize) 
matplotlib.rc('ytick', labelsize=ticksFontSize)

distributionScatter = ax3.scatter(smapleQuantiles, smapleQuantiles2, c='blue', marker='x') # If these are close to the straight line with slope line these points come from a normal distribution.

ax3.plot(smapleQuantiles, smapleQuantiles, color='red', linestyle='solid', marker=None,     markerfacecolor='red', markersize=12)
normalDistPlot2 = matplotlib.lines.Line2D([],[],color='red', linestyle='solid',  marker=None, markerfacecolor='red', markersize=12)

fig3.legend([normalDistPlot2, distributionScatter], [r'$Normal\ distribution$', r'$Comparison\ of\ datasets$'])
matplotlib.pyplot.show()

这会生成以下图: 经验数据的分位数图 QQ情节

经验数据的分位数图与文章中的不完全相同,我不知道为什么,因为我不擅长统计。但是,从编程的角度来看,这就是你可以做这一切的方式。

于 2014-07-16T20:34:48.153 回答