2

我想知道如何在 CRF++ 中进行交叉验证。它写在文档中:

crf_learn -f 3 -c 1.5 template_file train_file model_file

-c float:

With this option, you can change the hyper-parameter for the CRFs. With larger C value,
CRF tends to overfit to the give training corpus. This parameter trades the balance
between overfitting and underfitting. The results will significantly be influenced 
by this parameter. You can find an optimal value by using held-out data or more 
general model selection method such as cross validation.

如本手册中所述,如何进行交叉验证

4

2 回答 2

1

该手册试图说您可以通过自己对保留集执行交叉验证或测试来找出 C 参数的最佳值。CRF++ 没有这样的功能。谢谢

于 2016-09-22T09:49:27.630 回答
0

如果我的理解是正确的,CRF++ 没有内置交叉验证功能。我们必须分开做

于 2015-06-05T20:11:27.023 回答