这些页面上有很多关于因子分析的问题。我浏览了它们,但似乎没有什么相似之处,所以希望有人能提供帮助。
我正在对一些调查问题进行因子分析,我预计会出现一些潜在的结构。我正在运行主轴或minres
遇到相同的问题,如下所述。
我的数据集包含许多离散变量和编码为 的合理数量的缺失变量NA
,但即使在删除所有NA
问题后仍然存在:
minres.out <- factor.minres(r = res, nfactors = 5, residuals=F, rotate = "varimax", n.obs=NA, scores=F, SMC=T, missing=F, min.err=0.001, ,max.iter=50, symmetric=T,warnings=T,fm="minres")
minres.out
minres.out2 <- fa(r = res, nfactors = 5, residuals=F, rotate = "oblimin", n.obs=NA, scores=F, SMC=T, missing=F, impute="median",min.err=0.001, ,max.iter=50, symmetric=T,warnings=T,fm="minres", alpha=0.1, p=0.05,oblique.scores=F, use="pairwise")
minres.out2
第一个使用已弃用的版本并给我一个警告,但它有效。第二个给我以下错误:
Error in factor.scores(x.matrix, f = Structure, method = scores) :
object 'w' not found
我的数据中没有对象w
,但我并不真正理解这个对象首先是什么意思。
跑步traceback()
给了我:
3: factor.scores(x.matrix, f = Structure, method = scores)
2: fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate,
scores = scores, residuals = residuals, SMC = SMC, covar = covar,
missing = FALSE, impute = impute, min.err = min.err, max.iter = max.iter,
symmetric = symmetric, warnings = warnings, fm = fm, alpha = alpha,
oblique.scores = oblique.scores, np.obs = np.obs, use = use,
...)
1: fa(r = res, nfactors = 5, residuals = F, rotate = "oblimin",
n.obs = NA, scores = F, SMC = T, missing = F, impute = "median",
min.err = 0.001, , max.iter = 50, symmetric = T, warnings = T,
fm = "minres", alpha = 0.1, p = 0.05, oblique.scores = F,
use = "pairwise")
对我不是很有启发。对此有何建议w
?