15

编辑:这里的代码仍然有一些错误,它可以在性能部门做得更好,但是我没有尝试修复这个问题,而是将问题提交给英特尔讨论组并得到了很多很好的反馈,如果一切顺利,Atomic float 的抛光版本将包含在英特尔线程构建模块的近期版本中

好的,这是一个艰难的,我想要一个原子浮点数,不是为了超快的图形性能,而是作为类的数据成员常规使用。而且我不想为在这些类上使用锁付出代价,因为它没有为我的需求提供额外的好处。

现在有了英特尔的 tbb 和我见过的其他原子库,支持整数类型,但不支持浮点。所以我继续实施了一个,它有效......但我不确定它是否真的有效,或者我很幸运它有效。

这里的任何人都知道这是否不是某种形式的线程异端?

typedef unsigned int uint_32;

  struct AtomicFloat
  {
    private:
    tbb::atomic<uint_32> atomic_value_;

    public:
    template<memory_semantics M>
    float fetch_and_store( float value ) 
    {
        const uint_32 value_ = atomic_value_.tbb::atomic<uint_32>::fetch_and_store<M>((uint_32&)value);
        return reinterpret_cast<const float&>(value_);
    }

    float fetch_and_store( float value ) 
    {
        const uint_32 value_ = atomic_value_.tbb::atomic<uint_32>::fetch_and_store((uint_32&)value);
        return reinterpret_cast<const float&>(value_);
    }

    template<memory_semantics M>
    float compare_and_swap( float value, float comparand ) 
    {
        const uint_32 value_ = atomic_value_.tbb::atomic<uint_32>::compare_and_swap<M>((uint_32&)value,(uint_32&)compare);
        return reinterpret_cast<const float&>(value_);
    }

    float compare_and_swap(float value, float compare)
    {
        const uint_32 value_ = atomic_value_.tbb::atomic<uint_32>::compare_and_swap((uint_32&)value,(uint_32&)compare);
        return reinterpret_cast<const float&>(value_);
    }

    operator float() const volatile // volatile qualifier here for backwards compatibility 
    {
        const uint_32 value_ = atomic_value_;
        return reinterpret_cast<const float&>(value_);
    }

    float operator=(float value)
    {
        const uint_32 value_ = atomic_value_.tbb::atomic<uint_32>::operator =((uint_32&)value);
        return reinterpret_cast<const float&>(value_);
    }

    float operator+=(float value)
    {
        volatile float old_value_, new_value_;
        do
        {
            old_value_ = reinterpret_cast<float&>(atomic_value_);
            new_value_ = old_value_ + value;
        } while(compare_and_swap(new_value_,old_value_) != old_value_);
        return (new_value_);
    }

    float operator*=(float value)
    {
        volatile float old_value_, new_value_;
        do
        {
            old_value_ = reinterpret_cast<float&>(atomic_value_);
            new_value_ = old_value_ * value;
        } while(compare_and_swap(new_value_,old_value_) != old_value_);
        return (new_value_);
    }

    float operator/=(float value)
    {
        volatile float old_value_, new_value_;
        do
        {
            old_value_ = reinterpret_cast<float&>(atomic_value_);
            new_value_ = old_value_ / value;
        } while(compare_and_swap(new_value_,old_value_) != old_value_);
        return (new_value_);
    }

    float operator-=(float value)
    {
        return this->operator+=(-value);
    }

    float operator++() 
    {
        return this->operator+=(1);
    }

    float operator--() 
    {
        return this->operator+=(-1);
    }

    float fetch_and_add( float addend ) 
    {
        return this->operator+=(-addend);
    }

    float fetch_and_increment() 
    {
        return this->operator+=(1);
    }

    float fetch_and_decrement() 
    {
        return this->operator+=(-1);
    }
   };

谢谢!

编辑:按照 Greg Rogers 的建议将 size_t 更改为 uint32_t,这样它更便携

编辑:为整个事物添加了列表,并进行了一些修复。

更多编辑:在我的机器上使用锁定浮点数进行 5.000.000 += 操作(在我的机器上使用 100 个线程)需要 3.6 秒,而我的原子浮点数即使是愚蠢的 do-while 也需要 0.2 秒才能完成相同的工作。因此,> 30 倍的性能提升意味着它是值得的,(这就是问题所在)如果它是正确的。

更多编辑:正如 Awgn 指出的那样,我的fetch_and_xxxx部分都错了。修复了这个问题并删除了我不确定的部分 API(模板化内存模型)。并在运算符 += 方面实现了其他操作,以避免代码重复

添加:添加了运算符 *= 和运算符 /=,因为没有它们,浮点数就不会是浮点数。感谢 Peterchen 的评论,这被注意到了

编辑:最新版本的代码如下(我将保留旧版本以供参考)

  #include <tbb/atomic.h>
  typedef unsigned int      uint_32;
  typedef __TBB_LONG_LONG       uint_64;

  template<typename FLOATING_POINT,typename MEMORY_BLOCK>
  struct atomic_float_
  {
    /*  CRC Card -----------------------------------------------------
    |   Class:          atmomic float template class
    |
    |   Responsability: handle integral atomic memory as it were a float,
    |                   but partially bypassing FPU, SSE/MMX, so it is
    |                   slower than a true float, but faster and smaller
    |                   than a locked float.
    |                       *Warning* If your float usage is thwarted by
    |                   the A-B-A problem this class isn't for you
    |                       *Warning* Atomic specification says we return,
    |                   values not l-values. So  (i = j) = k doesn't work.
    |
    |   Collaborators:  intel's tbb::atomic handles memory atomicity
    ----------------------------------------------------------------*/
    typedef typename atomic_float_<FLOATING_POINT,MEMORY_BLOCK> self_t;

    tbb::atomic<MEMORY_BLOCK> atomic_value_;

    template<memory_semantics M>
    FLOATING_POINT fetch_and_store( FLOATING_POINT value ) 
    {
        const MEMORY_BLOCK value_ = 
            atomic_value_.tbb::atomic<MEMORY_BLOCK>::fetch_and_store<M>((MEMORY_BLOCK&)value);
        //atomic specification requires returning old value, not new one
        return reinterpret_cast<const FLOATING_POINT&>(value_);
    }

    FLOATING_POINT fetch_and_store( FLOATING_POINT value ) 
    {
        const MEMORY_BLOCK value_ = 
            atomic_value_.tbb::atomic<MEMORY_BLOCK>::fetch_and_store((MEMORY_BLOCK&)value);
        //atomic specification requires returning old value, not new one
        return reinterpret_cast<const FLOATING_POINT&>(value_);
    }

    template<memory_semantics M>
    FLOATING_POINT compare_and_swap( FLOATING_POINT value, FLOATING_POINT comparand ) 
    {
        const MEMORY_BLOCK value_ = 
            atomic_value_.tbb::atomic<MEMORY_BLOCK>::compare_and_swap<M>((MEMORY_BLOCK&)value,(MEMORY_BLOCK&)compare);
        //atomic specification requires returning old value, not new one
        return reinterpret_cast<const FLOATING_POINT&>(value_);
    }

    FLOATING_POINT compare_and_swap(FLOATING_POINT value, FLOATING_POINT compare)
    {
        const MEMORY_BLOCK value_ = 
            atomic_value_.tbb::atomic<MEMORY_BLOCK>::compare_and_swap((MEMORY_BLOCK&)value,(MEMORY_BLOCK&)compare);
        //atomic specification requires returning old value, not new one
        return reinterpret_cast<const FLOATING_POINT&>(value_);
    }

    operator FLOATING_POINT() const volatile // volatile qualifier here for backwards compatibility 
    {
        const MEMORY_BLOCK value_ = atomic_value_;
        return reinterpret_cast<const FLOATING_POINT&>(value_);
    }

    //Note: atomic specification says we return the a copy of the base value not an l-value
    FLOATING_POINT operator=(FLOATING_POINT rhs) 
    {
        const MEMORY_BLOCK value_ = atomic_value_.tbb::atomic<MEMORY_BLOCK>::operator =((MEMORY_BLOCK&)rhs);
        return reinterpret_cast<const FLOATING_POINT&>(value_);
    }

    //Note: atomic specification says we return an l-value when operating among atomics
    self_t& operator=(self_t& rhs) 
    {
        const MEMORY_BLOCK value_ = atomic_value_.tbb::atomic<MEMORY_BLOCK>::operator =((MEMORY_BLOCK&)rhs);
        return *this;
    }

    FLOATING_POINT& _internal_reference() const
    {
        return reinterpret_cast<FLOATING_POINT&>(atomic_value_.tbb::atomic<MEMORY_BLOCK>::_internal_reference());
    }

    FLOATING_POINT operator+=(FLOATING_POINT value)
    {
        FLOATING_POINT old_value_, new_value_;
        do
        {
            old_value_ = reinterpret_cast<FLOATING_POINT&>(atomic_value_);
            new_value_ = old_value_ + value;
        //floating point binary representation is not an issue because
        //we are using our self's compare and swap, thus comparing floats and floats
        } while(self_t::compare_and_swap(new_value_,old_value_) != old_value_);
        return (new_value_); //return resulting value
    }

    FLOATING_POINT operator*=(FLOATING_POINT value)
    {
        FLOATING_POINT old_value_, new_value_;
        do
        {
            old_value_ = reinterpret_cast<FLOATING_POINT&>(atomic_value_);
            new_value_ = old_value_ * value;
        //floating point binary representation is not an issue becaus
        //we are using our self's compare and swap, thus comparing floats and floats
        } while(self_t::compare_and_swap(new_value_,old_value_) != old_value_);
        return (new_value_); //return resulting value
    }

    FLOATING_POINT operator/=(FLOATING_POINT value)
    {
        FLOATING_POINT old_value_, new_value_;
        do
        {
            old_value_ = reinterpret_cast<FLOATING_POINT&>(atomic_value_);
            new_value_ = old_value_ / value;
        //floating point binary representation is not an issue because
        //we are using our self's compare and swap, thus comparing floats and floats
        } while(self_t::compare_and_swap(new_value_,old_value_) != old_value_);
        return (new_value_); //return resulting value
    }

    FLOATING_POINT operator-=(FLOATING_POINT value)
    {
        return this->operator+=(-value); //return resulting value
    }

    //Prefix operator
    FLOATING_POINT operator++()
    {
        return this->operator+=(1); //return resulting value
    }

    //Prefix operator
    FLOATING_POINT operator--() 
    {
        return this->operator+=(-1); //return resulting value
    }

    //Postfix operator
    FLOATING_POINT operator++(int)
    {
        const FLOATING_POINT temp = this;
        this->operator+=(1);
        return temp//return resulting value
    }

    //Postfix operator
    FLOATING_POINT operator--(int) 
    {
        const FLOATING_POINT temp = this;
        this->operator+=(1);
        return temp//return resulting value
    }

    FLOATING_POINT fetch_and_add( FLOATING_POINT addend ) 
    {
        const FLOATING_POINT old_value_ = atomic_value_;
        this->operator+=(addend);
        //atomic specification requires returning old value, not new one as in operator x=
        return old_value_; 
    }

    FLOATING_POINT fetch_and_increment() 
    {
        const FLOATING_POINT old_value_ = atomic_value_;
        this->operator+=(+1);
        //atomic specification requires returning old value, not new one as in operator x=
        return old_value_; 
    }

    FLOATING_POINT fetch_and_decrement() 
    {
        const FLOATING_POINT old_value_ = atomic_value_;
        this->operator+=(-1);
        //atomic specification requires returning old value, not new one as in operator x=
        return old_value_; 
    }
  };

  typedef atomic_float_<float,uint_32> AtomicFloat;
  typedef atomic_float_<double,uint_64> AtomicDouble;
4

8 回答 8

5

我会认真建议不要公开继承。我不知道原子实现是什么样的,但我假设它具有将其用作整数类型的重载运算符,这意味着在许多(也许是大多数?)情况下,将使用这些提升而不是你的浮点数。

我看不出有什么不可行的理由,但像你一样,我必须证明...

注意:您的operator float()例程没有加载获取语义,不应该将其标记为 const volatile (或绝对至少是 const )吗?

编辑:如果你要提供 operator--() 你应该提供前缀/后缀形式。

于 2008-10-28T03:55:25.247 回答
3

看起来您的实现假设sizeof(size_t) == sizeof(float). 对于您的目标平台,这是否总是正确的?

而且我不会说是异端邪说,而是说异端邪说。:)

于 2008-10-28T03:40:30.380 回答
1

这是在英特尔板上讨论后的代码状态,但仍未经过彻底验证以在所有情况下都能正常工作。

  #include <tbb/atomic.h>
  typedef unsigned int      uint_32;
  typedef __TBB_LONG_LONG       uint_64;

  template<typename FLOATING_POINT,typename MEMORY_BLOCK>
  struct atomic_float_
  {
    /*  CRC Card -----------------------------------------------------
    |   Class:          atmomic float template class
    |
    |   Responsability: handle integral atomic memory as it were a float,
    |                   but partially bypassing FPU, SSE/MMX, so it is
    |                   slower than a true float, but faster and smaller
    |                   than a locked float.
    |                       *Warning* If your float usage is thwarted by
    |                   the A-B-A problem this class isn't for you
    |                       *Warning* Atomic specification says we return,
    |                   values not l-values. So  (i = j) = k doesn't work.
    |
    |   Collaborators:  intel's tbb::atomic handles memory atomicity
    ----------------------------------------------------------------*/
    typedef typename atomic_float_<FLOATING_POINT,MEMORY_BLOCK> self_t;

    tbb::atomic<MEMORY_BLOCK> atomic_value_;

    template<memory_semantics M>
    FLOATING_POINT fetch_and_store( FLOATING_POINT value ) 
    {
        const MEMORY_BLOCK value_ = 
            atomic_value_.tbb::atomic<MEMORY_BLOCK>::fetch_and_store<M>((MEMORY_BLOCK&)value);
        //atomic specification requires returning old value, not new one
        return reinterpret_cast<const FLOATING_POINT&>(value_);
    }

    FLOATING_POINT fetch_and_store( FLOATING_POINT value ) 
    {
        const MEMORY_BLOCK value_ = 
            atomic_value_.tbb::atomic<MEMORY_BLOCK>::fetch_and_store((MEMORY_BLOCK&)value);
        //atomic specification requires returning old value, not new one
        return reinterpret_cast<const FLOATING_POINT&>(value_);
    }

    template<memory_semantics M>
    FLOATING_POINT compare_and_swap( FLOATING_POINT value, FLOATING_POINT comparand ) 
    {
        const MEMORY_BLOCK value_ = 
            atomic_value_.tbb::atomic<MEMORY_BLOCK>::compare_and_swap<M>((MEMORY_BLOCK&)value,(MEMORY_BLOCK&)compare);
        //atomic specification requires returning old value, not new one
        return reinterpret_cast<const FLOATING_POINT&>(value_);
    }

    FLOATING_POINT compare_and_swap(FLOATING_POINT value, FLOATING_POINT compare)
    {
        const MEMORY_BLOCK value_ = 
            atomic_value_.tbb::atomic<MEMORY_BLOCK>::compare_and_swap((MEMORY_BLOCK&)value,(MEMORY_BLOCK&)compare);
        //atomic specification requires returning old value, not new one
        return reinterpret_cast<const FLOATING_POINT&>(value_);
    }

    operator FLOATING_POINT() const volatile // volatile qualifier here for backwards compatibility 
    {
        const MEMORY_BLOCK value_ = atomic_value_;
        return reinterpret_cast<const FLOATING_POINT&>(value_);
    }

    //Note: atomic specification says we return the a copy of the base value not an l-value
    FLOATING_POINT operator=(FLOATING_POINT rhs) 
    {
        const MEMORY_BLOCK value_ = atomic_value_.tbb::atomic<MEMORY_BLOCK>::operator =((MEMORY_BLOCK&)rhs);
        return reinterpret_cast<const FLOATING_POINT&>(value_);
    }

    //Note: atomic specification says we return an l-value when operating among atomics
    self_t& operator=(self_t& rhs) 
    {
        const MEMORY_BLOCK value_ = atomic_value_.tbb::atomic<MEMORY_BLOCK>::operator =((MEMORY_BLOCK&)rhs);
        return *this;
    }

    FLOATING_POINT& _internal_reference() const
    {
        return reinterpret_cast<FLOATING_POINT&>(atomic_value_.tbb::atomic<MEMORY_BLOCK>::_internal_reference());
    }

    FLOATING_POINT operator+=(FLOATING_POINT value)
    {
        FLOATING_POINT old_value_, new_value_;
        do
        {
            old_value_ = reinterpret_cast<FLOATING_POINT&>(atomic_value_);
            new_value_ = old_value_ + value;
        //floating point binary representation is not an issue because
        //we are using our self's compare and swap, thus comparing floats and floats
        } while(self_t::compare_and_swap(new_value_,old_value_) != old_value_);
        return (new_value_); //return resulting value
    }

    FLOATING_POINT operator*=(FLOATING_POINT value)
    {
        FLOATING_POINT old_value_, new_value_;
        do
        {
            old_value_ = reinterpret_cast<FLOATING_POINT&>(atomic_value_);
            new_value_ = old_value_ * value;
        //floating point binary representation is not an issue becaus
        //we are using our self's compare and swap, thus comparing floats and floats
        } while(self_t::compare_and_swap(new_value_,old_value_) != old_value_);
        return (new_value_); //return resulting value
    }

    FLOATING_POINT operator/=(FLOATING_POINT value)
    {
        FLOATING_POINT old_value_, new_value_;
        do
        {
            old_value_ = reinterpret_cast<FLOATING_POINT&>(atomic_value_);
            new_value_ = old_value_ / value;
        //floating point binary representation is not an issue because
        //we are using our self's compare and swap, thus comparing floats and floats
        } while(self_t::compare_and_swap(new_value_,old_value_) != old_value_);
        return (new_value_); //return resulting value
    }

    FLOATING_POINT operator-=(FLOATING_POINT value)
    {
        return this->operator+=(-value); //return resulting value
    }

    //Prefix operator
    FLOATING_POINT operator++()
    {
        return this->operator+=(1); //return resulting value
    }

    //Prefix operator
    FLOATING_POINT operator--() 
    {
        return this->operator+=(-1); //return resulting value
    }

    //Postfix operator
    FLOATING_POINT operator++(int)
    {
        const FLOATING_POINT temp = this;
        this->operator+=(1);
        return temp//return resulting value
    }

    //Postfix operator
    FLOATING_POINT operator--(int) 
    {
        const FLOATING_POINT temp = this;
        this->operator+=(1);
        return temp//return resulting value
    }

    FLOATING_POINT fetch_and_add( FLOATING_POINT addend ) 
    {
        const FLOATING_POINT old_value_ = atomic_value_;
        this->operator+=(addend);
        //atomic specification requires returning old value, not new one as in operator x=
        return old_value_; 
    }

    FLOATING_POINT fetch_and_increment() 
    {
        const FLOATING_POINT old_value_ = atomic_value_;
        this->operator+=(+1);
        //atomic specification requires returning old value, not new one as in operator x=
        return old_value_; 
    }

    FLOATING_POINT fetch_and_decrement() 
    {
        const FLOATING_POINT old_value_ = atomic_value_;
        this->operator+=(-1);
        //atomic specification requires returning old value, not new one as in operator x=
        return old_value_; 
    }
  };

  typedef atomic_float_<float,uint_32> AtomicFloat;
  typedef atomic_float_<double,uint_64> AtomicDouble;
于 2008-10-28T05:31:33.900 回答
1

尽管uint32_t的大小可能等同于给定拱上的浮点数,但通过将一个强制转换重新解释为另一个,您隐含地假设原子增量、减量和所有其他位操作在两种类型上在语义上是等效的,这在现实中是不存在的。我怀疑它是否按预期工作。

于 2008-10-28T08:41:03.097 回答
1

我强烈怀疑您是否在 fetch_and_add 等中获得了正确的值,因为浮点加法不同于 int 加法。

这是我从这些算术中得到的:

1   + 1    =  1.70141e+038  
100 + 1    = -1.46937e-037  
100 + 0.01 =  1.56743e+038  
23  + 42   = -1.31655e-036  

所以,是的,线程安全,但不是你所期望的。

无锁算法(运算符+等)应该在原子性方面起作用(尚未检查算法本身..)


其他解决方案:由于都是加法和减法,您可以为每个线程提供自己的实例,然后将多个线程的结果相加。

于 2008-10-28T09:42:10.883 回答
1

只是对此的说明(我想发表评论,但显然不允许新用户发表评论):在引用上使用 reinterpret_cast 会产生不正确的代码与 gcc 4.1 -O3。这似乎在 4.4 中得到修复,因为它在那里工作。将 reinterpret_casts 更改为指针,虽然稍微难看,但在这两种情况下都有效。

于 2010-04-01T19:18:36.063 回答
0

从我对那段代码的阅读来看,我真的会对这样一个编译器感到愤怒,以至于为此推出了非原子的程序集。

于 2008-10-28T04:00:07.657 回答
0

让您的编译器生成汇编代码并查看它。如果操作不仅仅是一条汇编语言指令,那么它就不是原子操作,并且需要锁才能在多处理器系统中正常运行。

不幸的是,我不确定反之亦然——单指令操作保证是原子的。我不知道多处理器编程的细节到那个级别。我可以为任何一个结果提出理由。(如果其他人对此有一些明确的信息,请随时加入。)

于 2008-10-28T04:39:19.090 回答