8

我是 PyMC 的新手,并试图使用最大后验估计来拟合我的非齐次泊松过程和分段常数速率函数

我的过程描述了一天中的一些事件。因此,我将一天分成 24 小时,这意味着我的速率函数中有 24 个常数(分段常数)。

结合以下想法:

我想出了以下一段代码,但并不令人满意(从结果来看,我确信这是错误的):

import numpy as np
import pymc

eventCounter = np.zeros(24) # will be filled with real counts before going on
alpha = 1.0 / eventCounter.mean()

a0 = pymc.Exponential('a0', alpha)
a1 = pymc.Exponential('a1', alpha)
a2 = pymc.Exponential('a2', alpha)
a3 = pymc.Exponential('a3', alpha)
a4 = pymc.Exponential('a4', alpha)
a5 = pymc.Exponential('a5', alpha)
a6 = pymc.Exponential('a6', alpha)
a7 = pymc.Exponential('a7', alpha)
a8 = pymc.Exponential('a8', alpha)
a9 = pymc.Exponential('a9', alpha)
a10 = pymc.Exponential('a10', alpha)
a11 = pymc.Exponential('a11', alpha)
a12 = pymc.Exponential('a12', alpha)
a13 = pymc.Exponential('a13', alpha)
a14 = pymc.Exponential('a14', alpha)
a15 = pymc.Exponential('a15', alpha)
a16 = pymc.Exponential('a16', alpha)
a17 = pymc.Exponential('a17', alpha)
a18 = pymc.Exponential('a18', alpha)
a19 = pymc.Exponential('a19', alpha)
a20 = pymc.Exponential('a20', alpha)
a21 = pymc.Exponential('a21', alpha)
a22 = pymc.Exponential('a22', alpha)
a23 = pymc.Exponential('a23', alpha)

@pymc.deterministic
def piecewise_constant(a0=a0, a1=a1, a2=a2, a3=a3, a4=a4, a5=a5, a6=a6, a7=a7, a8=a8, a9=a9, a10=a10, a11=a11, a12=a12, a13=a13, a14=a14, a15=a15, a16=a16, a17=a17, a18=a18, a19=a19, a20=a20, a21=a21, a22=a22, a23=a23):
    out = np.zeros(24)
    out[0] = a0
    out[1] = a1
    out[2] = a2
    out[3] = a3
    out[4] = a4
    out[5] = a5
    out[6] = a6
    out[7] = a7
    out[8] = a8
    out[9] = a9
    out[10] = a10
    out[11] = a11
    out[12] = a12
    out[13] = a13
    out[14] = a14
    out[15] = a15
    out[16] = a16
    out[17] = a17
    out[18] = a18
    out[19] = a19
    out[20] = a20
    out[21] = a21
    out[22] = a22
    out[23] = a23
    return out

 observation = pymc.Poisson('obs', piecewise_constant, value=eventCounter, observed=True)
 model = pymc.Model([observation, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20, a21, a22, a23])
 map = pymc.MAP(model)
 map.fit()
 map.revert_to_max() # i'm not sure if i need this, even after reading the docs!

 print a0._value #...

a0, a1... 中的值似乎不适合我的数据(通过从具有给定 lambda 的非齐次泊松过程中采样生成 -> 测试用例!)

我如何拟合/估计我的 lambdas?我究竟做错了什么?

(我使用的是 pyMC 2.3.2!)

4

0 回答 0