您必须先转换为 RGB,查看单色 dicom 文件:
https ://github.com/twanmal/dicom_monochrome_to_opencv
# import the necessary packages
from imutils import contours
import scipy
from skimage import measure
import numpy as np # numeric library needed
import pandas as pd #for datafrome
import argparse # simple argparser
import imutils
import cv2 # for opencv image recognising tool
import dicom
filename = askopenfilename()
dicom_file = dicom.read_file(filename) ## original dicom File
#### a dicom monochrome-2 file has pixel value between approx -2000 and +2000, opencv doesn't work with it#####
#### in a first step we transform those pixel values in (R,G,B)
### to have gray in RGB, simply give the same values for R,G, and B,
####(0,0,0) will be black, (255,255,255) will be white,
## the threeshold to be automized with a proper quartile function of the pixel distribution
black_threeshold=0###pixel value below 0 will be black,
white_threeshold=1400###pixel value above 1400 will be white
wt=white_threeshold
bt=black_threeshold
###### function to transform a dicom to RGB for the use of opencv,
##to be strongly improved, as it takes to much time to run,
## and the linear process should be replaced with an adapted weighted arctan or an adapted spline interpolation.
def DicomtoRGB(dicomfile,bt,wt):
"""Create new image(numpy array) filled with certain color in RGB"""
# Create black blank image
image = np.zeros((dicomfile.Rows, dicomfile.Columns, 3), np.uint8)
#loops on image height and width
i=0
j=0
while i<dicomfile.Rows:
j=0
while j<dicomfile.Columns:
color = yaxpb(dicom_file.pixel_array[i][j],bt,wt) #linear transformation to be adapted
image[i][j] = (color,color,color)## same R,G, B value to obtain greyscale
j=j+1
i=i+1
return image
##linear transformation : from [bt < pxvalue < wt] linear to [0<pyvalue<255]: loss of information...
def yaxpb(pxvalue,bt,wt):
if pxvalue < bt:
y=0
elif pxvalue > wt:
y=255
else:
y=pxvalue*255/(wt-bt)-255*bt/(wt-bt)
return y
image=DicomtoRGB(dicom_file,bt=0,wt=1400)
## loading the RGB in a proper opencv format
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
## look at the gray file
cv2.imshow("gray", gray)
cv2.waitKey(0)
cv2.destroyWindow("gray")