8

我正在为具有 34 个因变量的 logit 模型建模数据,并且它不断抛出奇异矩阵错误,如下所示 - :

Traceback (most recent call last):
  File "<pyshell#1116>", line 1, in <module>
    test_scores  = smf.Logit(m['event'], train_cols,missing='drop').fit()
  File "/usr/local/lib/python2.7/site-packages/statsmodels-0.5.0-py2.7-linux-i686.egg/statsmodels/discrete/discrete_model.py", line 1186, in fit
    disp=disp, callback=callback, **kwargs)
  File "/usr/local/lib/python2.7/site-packages/statsmodels-0.5.0-py2.7-linux-i686.egg/statsmodels/discrete/discrete_model.py", line 164, in fit
    disp=disp, callback=callback, **kwargs)
  File "/usr/local/lib/python2.7/site-packages/statsmodels-0.5.0-py2.7-linux-i686.egg/statsmodels/base/model.py", line 357, in fit
    hess=hess)
  File "/usr/local/lib/python2.7/site-packages/statsmodels-0.5.0-py2.7-linux-i686.egg/statsmodels/base/model.py", line 405, in _fit_mle_newton
    newparams = oldparams - np.dot(np.linalg.inv(H),
  File "/usr/local/lib/python2.7/site-packages/numpy/linalg/linalg.py", line 445, in inv
    return wrap(solve(a, identity(a.shape[0], dtype=a.dtype)))
  File "/usr/local/lib/python2.7/site-packages/numpy/linalg/linalg.py", line 328, in solve
    raise LinAlgError, 'Singular matrix'
LinAlgError: Singular matrix

那是当我偶然发现这种方法将矩阵减少到其独立列时

def independent_columns(A, tol = 0):#1e-05):
    """
    Return an array composed of independent columns of A.

    Note the answer may not be unique; this function returns one of many
    possible answers.

    https://stackoverflow.com/q/13312498/190597 (user1812712)
    http://math.stackexchange.com/a/199132/1140 (Gerry Myerson)
    http://mail.scipy.org/pipermail/numpy-discussion/2008-November/038705.html
        (Anne Archibald)

    >>> A = np.array([(2,4,1,3),(-1,-2,1,0),(0,0,2,2),(3,6,2,5)])
    2 4 1 3
    -1 -2 1 0
    0 0 2 2
    3 6 2 5
    # try with checking the rank of matrixs 
    >>> independent_columns(A)
    np.array([[1, 4],
              [2, 5],
              [3, 6]])
    """
    Q, R = linalg.qr(A)
    independent = np.where(np.abs(R.diagonal()) > tol)[0]
    #print independent
    return A[:, independent], independent


A,independent_col_indexes=independent_columns(train_cols.as_matrix(columns=None)) 
#train_cols will not be converted back from a df to a  matrix object,so doing this explicitly
A2=pd.DataFrame(A, columns=train_cols.columns[independent_col_indexes])

test_scores = smf.Logit(m['event'],A2,missing='drop').fit()

我仍然得到 LinAlgError ,尽管我希望我现在可以降低矩阵等级。

另外,我看到np.linalg.matrix_rank(train_cols)返回 33(即在调用 Independent_columns 函数之前,总“x”列是 34(即,len(train_cols.ix[0])=34),这意味着我没有满秩矩阵),而np.linalg.matrix_rank(A2)返回 33(意味着我已经删除了一个列,但是我仍然看到 LinAlgError ,当我跑步test_scores = smf.Logit(m['event'],A2,missing='drop').fit()时,我错过了什么?

参考上面的代码 - 如何在协方差矩阵中找到退化的行/列

我试图通过一次引入每个变量来开始构建模型,这不会给我带来奇异矩阵错误,但我宁愿有一个确定性的方法,让我知道,我做错了什么&如何消除这些列。

编辑(更新了下面@ user333700的建议)

1.你说得对,“A2”没有降级 33 。IE。len(A2.ix[0]) =34-> 表示可能共线的列不会被删除 - 我是否应该增加“tol”,公差以获得 A2 的等级(及其列数),如 33。如果我将 tol 更改为上面的“1e-05”,然后我得到len(A2.ix[0]) =33,这表明 tol >0 (严格)是一个指标。在此之后,我只是做了同样的事情test_scores = smf.Logit(m['event'],A2,missing='drop').fit(),没有 nm 来获得收敛。

2.尝试“nm”方法后出现错误。奇怪的是,如果我只取 20,000 行,我确实得到了结果。由于它没有显示内存错误,而是“ Inverting hessian failed, no bse or cov_params available” -我假设,有多个几乎相似的记录 - 你会说什么?

m  = smf.Logit(data['event_custom'].ix[0:1000000] , train_cols.ix[0:1000000],missing='drop')
test_scores=m.fit(start_params=None,method='nm',maxiter=200,full_output=1)
Warning: Maximum number of iterations has been exceeded

Warning (from warnings module):
  File "/usr/local/lib/python2.7/site-packages/statsmodels-0.5.0-py2.7-linux-i686.egg/statsmodels/base/model.py", line 374
    warn(warndoc, Warning)
Warning: Inverting hessian failed, no bse or cov_params available


test_scores.summary()

Traceback (most recent call last):
  File "<pyshell#17>", line 1, in <module>
    test_scores.summary()
  File "/usr/local/lib/python2.7/site-packages/statsmodels-0.5.0-py2.7-linux-i686.egg/statsmodels/discrete/discrete_model.py", line 2396, in summary
    yname_list)
  File "/usr/local/lib/python2.7/site-packages/statsmodels-0.5.0-py2.7-linux-i686.egg/statsmodels/discrete/discrete_model.py", line 2253, in summary
    use_t=False)
  File "/usr/local/lib/python2.7/site-packages/statsmodels-0.5.0-py2.7-linux-i686.egg/statsmodels/iolib/summary.py", line 826, in add_table_params
    use_t=use_t)
  File "/usr/local/lib/python2.7/site-packages/statsmodels-0.5.0-py2.7-linux-i686.egg/statsmodels/iolib/summary.py", line 447, in summary_params
    std_err = results.bse
  File "/usr/local/lib/python2.7/site-packages/statsmodels-0.5.0-py2.7-linux-i686.egg/statsmodels/tools/decorators.py", line 95, in __get__
    _cachedval = self.fget(obj)
  File "/usr/local/lib/python2.7/site-packages/statsmodels-0.5.0-py2.7-linux-i686.egg/statsmodels/base/model.py", line 1037, in bse
    return np.sqrt(np.diag(self.cov_params()))
  File "/usr/local/lib/python2.7/site-packages/statsmodels-0.5.0-py2.7-linux-i686.egg/statsmodels/base/model.py", line 1102, in cov_params
    raise ValueError('need covariance of parameters for computing '
ValueError: need covariance of parameters for computing (unnormalized) covariances

编辑 2:(更新了@user333700 下面的建议)

重申我要建模的内容 - 不到 1% 的总用户“转换”(成功结果) - 所以我采取了 35(+ve) /65 (-ve) 的平衡样本

我怀疑该模型并不稳健,尽管它会收敛。因此,将使用“start_params”作为来自不同数据集的早期迭代的参数。此编辑是关于确认“start_params”是否可以输入结果如下 - :

A,independent_col_indexes=independent_columns(train_cols.as_matrix(columns=None))
A2=pd.DataFrame(A, columns=train_cols.columns[independent_col_indexes])
m  = smf.Logit(data['event_custom'], A2,missing='drop')
#m  = smf.Logit(data['event_custom'], train_cols,missing='drop')#,method='nm').fit()#This doesnt work, so tried 'nm' which work, but used lasso, as nm did not converge.
test_scores=m.fit_regularized(start_params=None, method='l1', maxiter='defined_by_method', full_output=1, disp=1, callback=None, alpha=0, \
trim_mode='auto', auto_trim_tol=0.01, size_trim_tol=0.0001, qc_tol=0.03)

a_good_looking_previous_result.params=test_scores.params #storing the parameters of pass1 to feed into pass2

test_scores.params
bidfloor_Quartile_modified_binned_0               0.305765
connectiontype_binned_0                          -0.436798
day_custom_binned_Fri                            -0.040269
day_custom_binned_Mon                             0.138599
day_custom_binned_Sat                            -0.319997
day_custom_binned_Sun                            -0.236507
day_custom_binned_Thu                            -0.058922
user_agent_device_family_binned_iPad            -10.793270
user_agent_device_family_binned_iPhone           -8.483099
user_agent_masterclass_binned_apple               9.038889
user_agent_masterclass_binned_generic            -0.760297
user_agent_masterclass_binned_samsung            -0.063522
log_height_width                                  0.593199
log_height_width_ScreenResolution                -0.520836
productivity                                     -1.495373
games                                             0.706340
entertainment                                    -1.806886
IAB24                                             2.531467
IAB17                                             0.650327
IAB14                                             0.414031
utilities                                         9.968253
IAB1                                              1.850786
social_networking                                -2.814148
IAB3                                             -9.230780
music                                             0.019584
IAB9                                             -0.415559
C(time_day_modified)[(6, 12]]:C(country)[AUS]    -0.103003
C(time_day_modified)[(0, 6]]:C(country)[HKG]      0.769272
C(time_day_modified)[(6, 12]]:C(country)[HKG]     0.406882
C(time_day_modified)[(0, 6]]:C(country)[IDN]      0.073306
C(time_day_modified)[(6, 12]]:C(country)[IDN]    -0.207568
C(time_day_modified)[(0, 6]]:C(country)[IND]      0.033370
... more params here 

现在在不同的数据集(pass2,用于索引)上,我的模型与以下相同 - 即。我读了一个新的数据框,做所有的变量转换,然后像之前一样通过 Logit 建模。

m_pass2  = smf.Logit(data['event_custom'], A2_pass2,missing='drop')
test_scores_pass2=m_pass2.fit_regularized(start_params=a_good_looking_previous_result.params, method='l1', maxiter='defined_by_method', full_output=1, disp=1, callback=None, alpha=0, \
trim_mode='auto', auto_trim_tol=0.01, size_trim_tol=0.0001, qc_tol=0.03)

并且,可能通过从较早的通道中获取“start_params”来继续迭代。

4

1 回答 1

6

对此有几点:

您需要 tol > 0 来检测接近完美的共线性,这也可能在以后的计算中导致数值问题。检查 的列数A2以查看是否确实删除了列。

Logit 需要对 exog 进行一些非线性计算,因此即使设计矩阵不是非常接近完美共线性,用于对数似然、导数或 Hessian 计算的变换变量最终可能仍会遇到数值问题,例如奇异的黑森州。

(当我们在浮点精度 1e-15、1e-16 附近工作时,所有这些都是浮点问题。matrix_rank 和类似 linalg 函数的默认阈值有时存在差异,这可能意味着在某些边缘情况下,一个函数将其识别为单数,另一个没有。)

包括 Logit 在内的离散模型的默认优化方法是简单的牛顿法,在相当好的情况下速度很快,但在条件差的情况下可能会失败。您可以尝试其他优化器之一,它将是 scipy.optimize 中的优化器之一,method='nm'通常非常健壮但速度慢,method='bfgs'在许多情况下效果很好,但也可能遇到收敛问题。

尽管如此,即使其他优化方法之一成功,仍然需要检查结果。通常,一种方法的失败意味着模型或估计问题可能没有很好地定义。

检查它是否只是初始值错误的问题或规范问题的一个好方法是首先运行method='nm',然后运行更准确的方法之一,例如newtonbfgs使用nm估计值作为起始值,并查看它是否从良好的起始值成功.

于 2014-05-24T18:39:06.533 回答